Identification, structure and phylogenetic analysis of Mlo gene family in Triticum aestivum and Malus domestica

Document Type : Research Article

Authors

1 University Of Kurdistan

2 Department of Plant Protection, University of Kurdistan

Abstract

Because the mutant mlo allele causes a non-race specific and broad-spectrum resistance to powdery mildew caused by Blumeria graminis f. sp. hordei, the Mlo gene was taken into consideration in barley. Mlo genes also play important roles in plant growth and responses to biotic and abiotic stresses. The Mlo gene family has been studied in several plant species. In this study, we used bioinformatics tools and searches in genomic databases to reveal the genetic characteristics and protein structure of the Mlo family in wheat (Triticum aestivum) and apple (Malus domestica). We employed Mlo proteins sequences of Arabidopsis thaliana as a template for tBLASTn, which eventually identified 29 MdMlo (M. domestica Mlo) proteins and 11 TaMlo proteins (T. aestivum Mlo). The comparative phylogenetic analysis classified MdMlo and TaMlo proteins into three main clades and showed that, regardless of plant species, Mlo1s (the first member of the Mlo protein family in wheat, apple and Arabidopsis), Mlo2s, Mlo3s, and so on up to Mlo12s, are closely related. This indicates that after the separation of these species, no further expansion has been occurred in the Mlo gene family. The functionally conserved motifs present in the Mlo proteins were investigated using MEME tool, which showed a maximum of 15 and minimum 10 conserved motifs. The genes TaMlo6, MdMlo8, MdMlo11, TaMlo2, and TaMlo1 are predicted to participate in powdery mildew resistance because of having E/D-F-S-F motif.

Keywords


ACEVEDO‐GARCIA, J., KUSCH, S. and PANSTRUGA, R.2014. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytologist 204: 273-281.
ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. and LIPMAN, D. J.1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
ATZEMA, J. L.1998. Durability of mlo resistance in barley against powdery mildew caused by Erysiphe graminis f. sp. hordei. Eidgenössische Technische Hochschule Zurich.
BAILEY, T. L., WILLIAMS, N., MISLEH, C. and LI, W. W.2006. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 34: W369-W373.
BURGE, C. and KARLIN, S.1997. Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology 268: 78-94.
BÜSCHGES, R., HOLLRICHER, K., PANSTRUGA, R., SIMONS, G., WOLTER, M., FRIJTERS, A., VAN DAELEN, R., VAN DER LEE, T., DIERGAARDE, P. and GROENENDIJK, J.1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695-705.
CHEN, Z., HARTMANN, H. A., WU, M.-J., FRIEDMAN, E. J., CHEN, J.-G., PULLEY, M., SCHULZE-LEFERT, P., PANSTRUGA, R. and JONES, A. M.2006. Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Molecular Biology 60: 583-597.
CHEN, Z., NOIR, S., KWAAITAAL, M., HARTMANN, H. A., WU, M.-J., MUDGIL, Y., SUKUMAR, P., MUDAY, G., PANSTRUGA, R. and JONES, A. M.2009. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. The Plant Cell 21: 1972-1991.
CONSONNI, C., HUMPHRY, M. E., HARTMANN, H. A., LIVAJA, M., DURNER, J., WESTPHAL, L., VOGEL, J., LIPKA, V., KEMMERLING, B. and SCHULZE-LEFERT, P.2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics 38: 716-720.
DESHMUKH, R., SINGH, V. and SINGH, B.2016. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris. Genetica 144: 229-241.
DEVOTO, A., PIFFANELLI, P., NILSSON, I., WALLIN, E., PANSTRUGA, R., VON HEIJNE, G. and SCHULZE-LEFERT, P.1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry 274: 34993-35004.
ELLIOTT, C., MÜLLER, J., MIKLIS, M., BHAT, R. A., SCHULZE-LEFERT, P. and PANSTRUGA, R.2005a. Conserved extracellular cysteine residues and cytoplasmic loop–loop interplay are required for functionality of the heptahelical MLO protein. Biochemical Journal 385: 243-254.
ELLIOTT, C., MÜLLER, J., MIKLIS, M., SCHULZE-LEFERT, P. and PANSTRUGA, R.2005b. Conserved extracellular cysteine residues and cytoplasmic loop–loop interplay are required for functionality of the heptahelical MLO protein. Biochemical Journal 385: 243-254.
FEECHAN, A., JERMAKOW, A. M. and DRY, I. B.2009. Grapevine MLO candidates required for powdery mildew pathogenicity? Plant Signaling and Behavior 4: 522-523.
FILIZ, E. and VATANSEVER, R.2018. Genome-wide identification of mildew resistance locus O (MLO) genes in tree model poplar (Populus trichocarpa): powdery mildew management in woody plants. European Journal of Plant Pathology 152: 95-109.
FRANCESCHINI, A., SZKLARCZYK, D., FRANKILD, S., KUHN, M., SIMONOVIC, M., ROTH, A., LIN, J., MINGUEZ, P., BORK, P. and VON MERING, C.2012. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research 41: D808-D815.
FU, X. L., LU, Y. G., LIU, X. D. and LI, J. Q.2009. Crossability barriers in the interspecific hybridization between Oryza sativa and O. meyeriana. Journal of Integrative Plant Biology 51: 21-28.
GASTEIGER, E., HOOGLAND, C., GATTIKER, A., WILKINS, M. R., APPEL, R. D. and BAIROCH, A.2005. Protein identification and analysis tools on the ExPASy server. Pp. 571-607, In (ed.)^(eds.). The proteomics protocols handbook, Springer.
GUO, A., ZHU, Q., CHEN, X. and LUO, J.2007. GSDS: a gene structure display server. Yi chuan= Hereditas 29: 1023-1026.
HALL, T. A.1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series. pp. 95-98. [London]: Information Retrieval Ltd., c1979-c2000.
HUMPHRY, M., REINSTAEDLER, A., IVANOV, S., BISSELING, T. and PANSTRUGA, R.2011. Durable broad‐spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss‐of‐function mutations in PsMLO1. Molecular Plant Pathology 12: 866-878.
JAROSCH, B., JANSEN, M. and SCHAFFRATH, U.2003. Acquired resistance functions in mlo barley, which is hypersusceptible to Magnaporthe grisea. Molecular Plant-Microbe Interactions 16: 107-114.
JØRGENSEN, I. H.1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63: 141-152.
JUNG, E. H., JUNG, H. W., LEE, S. C., HAN, S. W., HEU, S. and HWANG, B. K.2004. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1676: 211-222.
KĘDZIERSKI, Ł., MONTGOMERY, J., CURTIS, J. and HANDMAN, E.2004. Leucine-rich repeats in host-pathogen interactions. Archivum Immunologiae et Therapiae Experimentalis 52: 104-112.
KEMMERLING, B., SCHWEDT, A., RODRIGUEZ, P., MAZZOTTA, S., FRANK, M., QUAMAR, S., MENGISTE, T., BETSUYAKU, S. and PARKER, J.2007. Mü ssig C, Thomma BPHJ, Albrecht C, de Vries S, Hirt H, Nü rnberger T: The BRI1-associated kinase1, BAK1, has a brassinolideindependent role in plant cell-death control. Current Biology 17: 1116-1122.
KIM, D. S. and HWANG, B. K.2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell‐death response and bacterial and oomycete proliferation. The Plant Journal 72: 843-855.
KIM, M. C., LEE, S. H., KIM, J. K., CHUN, H. J., CHOI, M. S., CHUNG, W. S., MOON, B. C., KANG, C. H., PARK, C. Y. and YOO, J. H.2002a. MLO, a modulator of plant defense and cell death, is a novel calmodulin-binding protein isolation and characterization of a rice Mlo homologue. Journal of Biological Chemistry 277: 19304-19314.
KIM, M. C., PANSTRUGA, R., ELLIOTT, C., MÜLLER, J., DEVOTO, A., YOON, H. W., PARK, H. C., CHO, M. J. and SCHULZE-LEFERT, P.2002b. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416: 447.
KONISHI, S., SASAKUMA, T. and SASANUMA, T.2010. Identification of novel Mlo family members in wheat and their genetic characterization. Genes and Genetic Systems 85: 167-175.
KUMAR, J., HÜCKELHOVEN, R., BECKHOVE, U., NAGARAJAN, S. and KOGEL, K.-H.2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91: 127-133.
KYTE, J. and DOOLITTLE, R. F.1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157: 105-132.
LESCOT, M., DÉHAIS, P., THIJS, G., MARCHAL, K., MOREAU, Y., VAN DE PEER, Y., ROUZÉ, P. and ROMBAUTS, S.2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research 30: 325-327.
LIM, C. W. and LEE, S. C.2014. Functional roles of the pepper MLO protein gene, CaMLO2, in abscisic acid signaling and drought sensitivity. Plant Molecular Biology 85: 1-10.
LIU, J.-H., PENG, T. and DAI, W.2014. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Molecular Biology Reporter 32: 303-317.
LIU, Q. and ZHU, H.2008. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409: 1-10.
NEKRASOV, V., WANG, C., WIN, J., LANZ, C., WEIGEL, D. and KAMOUN, S.2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7: 1-6.
OSAKABE, Y., MARUYAMA, K., SEKI, M., SATOU, M., SHINOZAKI, K. and YAMAGUCHI-SHINOZAKI, K.2005. Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. The Plant Cell 17: 1105-1119.
PANDA, S. and CHANDRA, G.2012. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation 8: 891.
PANSTRUGA, R.2005a. Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Molecular Biology 59: 485-500.
PANSTRUGA, R.2005b. Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Portland Press Limited.
PARLEVLIET, J.1993. What is durable resistance, a general outline. Pp. 23-39, In (ed.)^(eds.). Durability of disease resistance, Springer.
PAVAN, S., JACOBSEN, E., VISSER, R. G. and BAI, Y.2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Molecular Breeding 25: 1.
PESSINA, S., PAVAN, S., CATALANO, D., GALLOTTA, A., VISSER, R. G., BAI, Y., MALNOY, M. and SCHOUTEN, H. J.2014. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. Biomedicine Central Genomics 15: 618.
PIFFANELLI, P., ZHOU, F., CASAIS, C., ORME, J., JAROSCH, B., SCHAFFRATH, U., COLLINS, N. C., PANSTRUGA, R. and SCHULZE-LEFERT, P.2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiology 129: 1076-1085.
PUNTA, M., COGGILL, P., EBERHARDT, R., MISTRY, J., TATE, J., BOURSNELL, C., PANG, N., FORSLUND, K. and CERIC, G.other authors.(2012;). The Pfam protein families database. Nucleic Acids Research 40: D1.
QUEVILLON, E., SILVENTOINEN, V., PILLAI, S., HARTE, N., MULDER, N., APWEILER, R. and LOPEZ, R.2005. InterProScan: protein domains identifier. Nucleic Acids Research 33: W116-W120.
REDDY, V. S., ALI, G. S. and REDDY, A.2003. Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca 2+-dependent calmodulin-binding domains. Plant Molecular Biology 52: 143-159.
SEVEROGLU, Z. and OZYIGIT, I. I.2012. Powdery mildew disease in some natural and exotic plants of Istanbul, Turkey. Pakistan Journal of Botany 44: 387-393.
SHEN, Q., ZHAO, J., DU, C., XIANG, Y., CAO, J. and QIN, X.2012. Genome-scale identification of MLO domain-containing genes in soybean (Glycine max L. Merr.). Genes and Genetic Systems 87: 89-98.
SINGH, V., SINGH, A., CHAND, R. and SINGH, B.2012. Genome wide analysis of disease resistance mlo gene family in sorghum [Sorghum bicolor (l.) Moench]. Journal Plant Genom 2: 18-27.
SWARBRECK, D., WILKS, C., LAMESCH, P., BERARDINI, T. Z., GARCIA-HERNANDEZ, M., FOERSTER, H., LI, D., MEYER, T., MULLER, R. and PLOETZ, L.2007. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research 36: D1009-D1014.
THOMPSON, J. D., HIGGINS, D. G. and GIBSON, T. J.1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
TORII, K. U.2004. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. International Reviewof Cytology 234: 1-46.
TUSNADY, G. E. and SIMON, I.2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849-850.
VELASCO, R., ZHARKIKH, A., AFFOURTIT, J., DHINGRA, A., CESTARO, A., KALYANARAMAN, A., FONTANA, P., BHATNAGAR, S. K., TROGGIO, M. and PRUSS, D.2010. The genome of the domesticated apple (Malus× domestica Borkh.). Nature Genetics 42: 833-839.
YU, C. S., CHEN, Y. C., LU, C. H. and HWANG, J. K.2006. Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics 64: 643-651.
ZAIDI, S. S.-E.-A., MUKHTAR, M. S. and MANSOOR, S.2018. Genome editing: targeting susceptibility genes for plant disease resistance. Trends in Biotechnology 36: 898-906.