Pathogenicity of Cladosporium halotolerans on some legumes

Document Type : Research Article

Authors

1 Food Legume Research, Dryland Agricultural Research Inst., Maragheh, Iran

2 ِDEpartment of Plant Protection, Faculty of Agriculture, University of Jiroft

Abstract

In 2018, a drastic Ascochyta blight epidemic on chickpea crops occurred in the Northwest of Iran. A survey was conducted in the region to identify races of Ascochyta rabiei and estimate the yield loss. Infected plant samples were taken from an infected field in Pasvah region and transferred to the lab at Dryland Agricultural Research Institute (DARI), Maragheh. In addition to A. rabiei, a Cladosporium-like taxa is also isolated from plants showing disease symptoms. Based on morphological characteristics and DNA sequence comparisons, isolates of this fungus were identified as Cladosporium halotolerans. Pathogenicity tests and Koch’s postulates were verified and fulfilled on chickpeas under controlled conditions. The disease symptoms developed on the host plant after 5 days after inoculation (dai) under controlled conditions included appearing yellow-brownish leaflets on the branches that latterly turned to wilt and were covered with gray-black mold. Histological studies also confirmed the pathogenicity of this fungus on chickpeas. Host range investigations were carried out on the further six species belonging to the Fabaceae, including garden pea, lentil, garden vetch, narbon vetch, bitter vetch, and grass pea. Results showed that this pathogen can produce the same disease symptoms on all inoculated, as well. This study represents the first attempt to pathogenicity of C. halotolerans on legumes in the world.

Keywords


Amirmijani, A., Khodaparast, S., and Zare, R. 2014. Contribution to the identification of Cladosporium species in the north of Iran. Rostaniha. 15:153–166 Available at: http://journals.areo.ir/article_101239_9742b096b0170885fdbd61804daff184.pdf.
Archer, M., and Xu, J. 2021. Current practices for reference gene selection in rt-qpcr of Aspergillus: Outlook and recommendations for the future. Genes (Basel). 12:960.
Barnett, H. L., and Hunter, B. B. 1972. Illustrated Genera of Imperfect Fungi. 3rd ed. Minneapolis: Burgess Publishing Company.
Baxter, B. K., and Zalar, P. 2019. The extremophiles of Great Salt Lake: Complex microbiology in a dynamic hypersaline ecosystem. In Model Ecosystems in Extreme Environments, , p. 57–99.
Bensch, K., Braun, U., Groenewald, J. Z., and Crous, P. W. 2012. The genus Cladosporium. Stud. Mycol. 72:1–402.
Bensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., de Jesús Yáñez-Morales, M., and Crous, P. W. 2015. Common but different: The expanding realm of Cladosporium. Stud. Mycol. 82:23–74.
Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., et al. 2010. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud. Mycol. 67:1–94.
Bensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Jurjević, Andersen, B., et al. 2018. Cladosporium species in indoor environments. Stud. Mycol. 89:177–301.
Brazee, N. J., Hulvey, J. P., and Wick, R. L. 2011. Evaluation of partial tef1, rpb2, and nLSU sequences for identification of isolates representing Armillaria calvescens and Armillaria gallica from northeastern North America. Fungal Biol. 115:741–749.
Burdon, J. J., Thrall, P. H., and Ericson, L. 2009. Plant Pathogens and Disease : Newly Emerging Diseases. Amesterdam: Elsevier.
Carbone, I., and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycete. Mycologia. 91:553–556.
Divakara, S. T., Santosh, P., Aiyaz, M., Venkata Ramana, M., Hariprasad, P., Nayaka, S. C., et al. 2014. Molecular identification and characterization of Fusarium spp. associated with sorghum seeds. J. Sci. Food Agric. 94:1132–1139.
Dugan, F. M., Braun, U., Groenewald, J. Z., and Crous, P. W. 2008. Morphological plasticity in Cladosporium sphaerospermum. Persoonia Mol. Phylogeny Evol. Fungi. 21:6–19.
Ettenauer, J., Piñar, G., Tafer, H., and Sterflinger, K. 2014. Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene. In Frontiers in Microbiology, eds. J. Seckbach and P. Rampelotto. Academic Press.
FAO. 2019.http://faostat.fao.org/faostat/collections. Accessed 15July 2021.
Geiser, D. M. 2004. Practical Molecular Taxonomy of Fungi. In Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine, eds. J.S. Tkacz and L. Lnge. Springer, Boston, MA, p. 3–14.
Ghaffari, A. 2010. The role of Dryland Agricultural Research Institute in drought mitigation in Iran. In Options Méditerranéennes. Séries A. Mediterranean Seminars, Istanbul, Turkey, 4-6 March 2010: Economics of drought and drought preparedness in a climate change context. Proceedings of the Second International Conference on Drought Management, p. 273–278.
Gonçalves, V. N., Cantrell, C. L., Wedge, D. E., Ferreira, M. C., Soares, M. A., Jacob, M. R., et al. 2016. Fungi associated with rocks of the Atacama Desert: Taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ. Microbiol. 18:232–245.
Groenewald, M., Groenewald, J. Z., Braun, U., and Crous, P. W. 2006. Host range of Cercospora apii and C. beticola and description of C. apiicola, a novel species from celery. Mycologia. 98:275–285.
Gunde-Cimerman, N., Sonjak, S., Zalar, P., Frisvad, J. C., Diderichsen, B., and Plemenitaš, A. 2003. Extremophilic fungi in arctic ice: A relationship between adaptation to low temperature and water activity. Phys. Chem. Earth. 28:1273–1278.
Hall, T. A. 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows.
Headley, S. A., de Mello Zanim Michelazzo, M., Elias, B., Viana, N. E., Pereira, Y. L., Pretto-Giordano, L. G., et al. 2019. Disseminated melanized fungal infection due to Cladosporium halotolerans in a dog coinfected with canine adenovirus-1 and canine parvovirus-2. Brazilian J. Microbiol. 50:859–870.
Hirata, T. and Takamatsu, S. 1996. Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia of several powdery mildew fungi. Mycoscience. 37 (3): 283–288.
Huang, S. K., Jeewon, R., Hyde, K. D., Jayarama Bhat, D., Chomnunti, P., and Wen, T. C. 2018. Beta-tubulin and Actin gene phylogeny supports Phaeoacremonium ovale as a new species from freshwater habitats in China. MycoKeys. 41:1–15.
Isenegger, D. A., Ford, R., and Taylor, P. W. J. 2011. Disease reaction of chickpea (Cicer spp.) genotypes to Botrytis grey mould (Botrytis cinerea). Australas. Plant Pathol. 40:583–590.
Kaiser, W. 1992. Fungi associated with the seeds of commercial lentils from the U.S. Pacific Northwest. Plant Dis. 76:605–610.
Kandhare, A. S. 2014. Fungal from different seed categories of chickpea. Int. J. Inf. Res. Rev. 1:32–33.
Karlsson, I., Edel-Hermann, V., Gautheron, N., Durling, M. B., Kolseth, A. K., Steinberg, C., et al. 2016. Genus-specific primers for study of Fusarium communities in field samples. Appl. Environ. Microbiol. 82:491–501.
Lorenzini, M., and Zapparoli, G. 2015. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 108:1171–1180.
McKnight, K. H., and Rayner, R. W. 1972. A Mycological Colour Chart. Mycologia. 64:230–233.
Meneses, P. R., Dorneles, K. R., Belle, C., Moreira-Nuñez, V. L., Gonçalves, V., and de Farias, C. R. J. 2018. First report of Cladosporium cladosporioides causing leaf spot on tomato in Mexico. Plant Dis. Notes. 102:759.
Nene, Y. L., Sheila, K., and Sharma, S. B. 1996. A World List of Chickpea and Pigeonpea Pathogens. 5th ed. Andhra Pradesh, India: ICRISAT.
Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., and Larsson, K. H. 2008. Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinforma. 2008:193–201.
Oerke, E. C. 2006. Centenary Review: Crop losses to pests. J. Agric. Sci. 144:31–43.
de Oliveria, R. J. V., de Lima, T. E. F., da Silva, G. A., and De Querioz Cavalcanti, M. A. 2014. Cladosporium species from hypersaline endophytes in leaves of Cocos nucifera and Vitis labrusca. Mycotoxon. 129:25–31.
Quaglia, M., Santinelli, M., Sulyok, M., Onofri, A., Covarelli, L., and Beccari, G. 2020. Aspergillus, Penicillium and Cladosporium species associated with dried date fruits collected in the Perugia (Umbria, Central Italy) market. Int. J. Food Microbiol. 322:108585 Available at: https://doi.org/10.1016/j.ijfoodmicro.2020.108585.
Sandoval-Denis, M., Sutton, D. A., Martin-Vicente, A., Cano-Lira, J. F., Wiederhold, N., Guarro, J., et al. 2015. Cladosporium species recovered from clinical samples in the United States. J. Clin. Microbiol. 53:2990–3000.
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U. S. A. 109.
Schubert, K., and Braun, U. 2007. Taxonomic revision of the genus Cladosporium s. lat. 6. New species, reallocations to and synonyms of Cercospora, Fusicladium, Passalora, Septonema and Stenella. Nov. Hedwigia. 84.
Schubert, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., Starink, M., Hill, C. F., et al. 2007. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud. Mycol. 58:105–156.
Segers, F. J. J., van Laarhoven, K. A., Huinink, H. P., Adan, O. C. G., Wösten, H. A. B., and Dijksterhuis, J. 2016. The indoor fungus Cladosporium halotolerans survives humidity dynamics markedly better than Aspergillus niger and Penicillium rubens despite less growth at lowered steady-state water activity. Appl. Environ. Microbiol. 82:5089–5098.
Tack, A. J. M., Thral, P. H., Barrett, L. G., Burdon, J. J., and Laine, A. L. 2012. Variation in infectivity and aggressiveness in space and time in wild host- pathogen systems : Causes and consequences. Evol. Biol. 25:1918–1936.
Tamura, K., Stecher, G., and Kumar, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol.
Thomma, B. P. H. J. 2003. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 4.
Walsh, P. S., Metzger, D. A., and Higuchi, R. 1991. Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 10.
White, T. ., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR Protocols: A guide to Methods and Applications, Academic Press, p. 315–322.
Yang, J., Lien, S., Chou, Y., and Kirschner, R. 2016. Cladosporium halotolerans, a new record of an indoor fungus in Taiwan. Fungal Sci. 31:1–6 Available at: https://scholar.google.co.jp/scholar?hl=ja&as_sdt=0%2C5&q=Cladosporium+halotolerans%2C+a+new+record+of+an+indoor++fungus+in+Taiwan+&btnG=.
Zalar, P., De Hoog, G. S., Schroers, H. J., Crous, P. W., Groenewald, J. Z., and Gunde-Cimerman, N. 2007. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud. Mycol. 58:157–183 Available at: http://dx.doi.org/10.3114/sim.2007.58.06.