Study on the diversity of Botrytis spp. Isolated from different plants in West Azarbaijan province and Sanadaj city (Kurdistan province)

Document Type : Research Article

Authors

1 Higher Education Center Shahid Bakeri Miyandoab, Urmia University, Miyandoab, Iran.

2 Department of Plant Protection, Faculty of Agriculture, Urmia University, Iran.

3 Department of plant protection, Faculty of Agriculture, University of Urmia, Iran

Abstract

The genus Botrytis P. Micheli ex Pers., is an efficient and cosmopolitan plant pathogenic fungus, causing destructive plant disesaes and significant crop losses in a wide variety of plant species all over the world. In order to identification of Botrytis species from different crop plants, symptomatic plants were collected from different orchards and greenhouses in Urmia, Miyandoab, Sardasht and Piranshahr (West Azarbaijan province) and Sanandaj (Kurdistan province). Totally, 271 Botrytis isolates were recovered from grapevine (168 isolates), strawberry (44 isolates), apple (18 isolates), ornamental plants (Geranium, Aloe vera and Cacti) (39 isolates) and white-headed cabbage (2 isolates). Based on comparision of morphological characteristics and phylogenetic analyses using sequences of three protein coding genes G3PDH, HSP60 and RPB2, three species including Botrytis cinerea, B. prunorum and B. sinoviticola were identified. Botrytis prunorum with 125 isolates were the most prevalent species followed by B. cinerea (116 isolates), and B. sinovticola (30 isolates). Botrytis prunorum is a new species to Iran mycobiota and apple, grapevine, geranium and strawberry are introduced as new hosts (matrix nova) for this species. Also, apple and grapevine are reported here as new hosts for B. sinovticola. Results of pathgenicity tests of the selected isolates from the identified species on leaves and berries of Thompson seedlees grape showed that isolates of B. cinerea and B. prunorum had the highest and lowest aggressiveness on both leaves and fruits, respectively and B. sinoviticola isolates had moderate aggressiveness.

Keywords


Acosta Morel W., Marques‐Costa T.M., Santander‐Gordón D., Anta Fernández F., Zabalgogeazcoa I., Vázquez de Aldana B.R., Sukno S.A., Díaz‐Mínguez J.M. and Benito E.P. 2019. Physiological and population genetic analysis of Botrytis field isolates from vineyards in Castilla y León, Spain. Plant Pathology 68: 523–536.
Altschul S.F., Madden T.L., Schaffer AA., Zhang J., Miller W. and Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.
Barnes S.E. and Shaw M.W. 2003. Infection of commercial hybrid primula seeds by Botrytis cinerea and latent disease spread through the plants. Phytopathology 93: 573–578.
Beever R.E. and Weeds P.L. 2007. Taxonomy and genetic variation of Botrytis and Botryotinia. pp. 29–52. In: Elad Y., Williamson B., Tudzynski P. and Delen N. (eds.). Botrytis: biology, pathology and control. Springer, Dordrecht, The Netherlands.
Boddy L. 2015. Pathogens of autotrophs. pp. 245–292. In: Watkinson SC., Boddy L. and Money NP. (eds.). The Fungi. Elsevier, Waltham, MA.
Carisse O., Levasseur A and Van der Heyden H. 2012. A new risk indicator for Botrytis leaf blight of onion caused by Botrytis squamosa based infection efficiency of airborne inoculum. Plant Pathology 61: 154–1164.
Dugan F.M., Hellier B.C. and Lupien L. 2007. Pathogenic fungi in garlic seed cloves from the United States and China, and efficacy of fungicides against pathogens in garlic germplasm in Washington State. Journal of Phytopathology 155: 437–445.
Elad Y., Pertot I., Prado, A.M.C. and Stewart A. 2016. Plant Hosts of Botrytis spp. pp. 413–486. In: Fillinger S. and Elad Y. (eds.). Botrytis–the Fungus, the pathogen and its management in agricultural systems. Springer International Publishing Switzerland.
Elad Y., Williamson B., Tudzynski P. and Delen N. 2007. Botrytis spp. and diseases they cause in agricultural systems-an introduction. pp. 1-8. In: Elad Y., Williamson B., Tudzynski P. and Delen N. (eds.). Botrytis: biology, pathology, and control. Springer, Dordrecht, The Netherlands.
Elfar K., Riquelme D., Zoffoli J.P. and Latorre B.A. 2017. First report of Botrytis prunorum causing fruit rot on kiwifruit in Chile. Plant Disease 101: 388.
Ellerbrock L.A. and Lorbeer J.W. 1977. Etiology and control of onion flower blight. Phytopathology 67: 1550–1559.
Ershad D. 2009. Fungi of Iran. 3nd ed. Agricultural Research. Education & Extension Organization, Publication. No. 10, Tehran, 531 p.
Esterio M., Osorio-Navarro C., Carreras, C., Azócar M., Copier C., Estrada V., Rubilar M. and Auger J. 2020. Botrytis prunorum associated to Vitis vinifera blossom blight in Chile. Plant Disease 104: 2324–2329.
Farr D.F. and Rossman A.Y. 2022. Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Retrived January 4, 2022, from http://nt.ars-grin.gov/fungaldatabases/
Ferrada E.E., Latorre B.A., Zoffoli J.P. and Castillo A. 2016. Identification and characterization of Botrytis blossom blight of Japanese plums caused by Botrytis cinerea and B. prunorum sp. nov. in Chile. Phytopathology 106: 155–165.
Ferrada E.E., Naranjo P., Briceño E.X., Lolas M. and Díaz. G.A. 2020. Occurrence of Botrytis prunorum causing calyx-end rot in european pear fruits during cold storage in Chile. Plant Disease 104: 590.
Garfinkel A.R. 2021. The history of Botrytis taxonomy, the rise of phylogenetics, and implications for species recognition. Phytopathology 111: 437–454.
Garfinkel A.R., Coats, K.P., Sherry, D.L. and Chastagner, G.A. 2019. Genetic analysis reveals unprecedented diversity of a globally-important plant pathogenic genus. Scientific Reports 9: 6671.
Garfinkel A.R., Lorenzini M., Zapparoli G. and Chastagner G.A. 2017. Botrytis euroamericana, a new species from peony and grape in North America and Europe. Mycologia 109: 495–507.
Grant-Downton R.T., Terhem R.B., Kapralov M.V., Mehdi S., Roudriguez-Enriquez M.J., Gurr S.J., van Kan J.A.L. and Dewey F.M. 2014. A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis. Plos One 9(6): e89272.
Harper L.A., Derbyshire M.C. and Lopez-Ruiz F.J. 2019. Identification and characterization of Botrytis medusae, a novel cryptic species causing grey mold on wine grapes in Australia. Plant Pathology 68: 939–953.
He S.Q., Wen Z.H., Bai B., Jing Z.Q. and Wang X. W. 2021. Botrytis polygoni, a new species of the genus Botrytis infecting Polygonaceae in Gansu, China. Mycologia 113: 78–91.
Hennebert G.L. 1973. Botrytis and Botrytis-like genera. Persoonia 7: 183–204.
Jarvis W.R. 1980. Taxonomy. pp. 1–18. In: Coley-Smith, J.R. Verhoeff, K. Jarvis, W.R. (eds.). The biology of Botrytis. Academic Press Inc., London.
Johnston P.R., Hoksbergen K., Park D. and Beever R.E. 2014. Genetic diversity of Botrytis in New Zealand vineyards and the significance of its seasonal and regional variation. Plant Pathology 63: 888–898.
Katoh K., Rozewicki J. and Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 108: 1–7.
Li X., Kerrigan J., Chai W. and Schnabel G. 2012. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104: 650–658.
Liu Q., Li G., Li J. and Chen S. 2016. Botrytis eucalypti, a novel species isolated from diseased Eucalyptus seedlings in South China. Mycological Progress 15: 1057–1079.
Lorenz D.H. 1983. Investigations on the morphological variability and the pathogenicity of Botrytis cinerea and Botryotinia fuckeliana Whetz. Journal of Plant Diseases and Protection 90: 622–633.
Lorenzini M. and Zapparoli G. 2014. An isolate morphologically and phylogenetically distinct from Botrytis cinerea obtained from withered grapes possibly represents a new species of Botrytis. Plant Pathology 63: 1326–1335.
Ma Z. and Michailides T.J. 2005. Genetic structure of Botrytis cinerea populations from different host plants in California. Plant Disease 89: 1083–1089.
Martinez F., Blancard D., Lecomte P., Levis C., Dubos B. and Fermaud M. 2003. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. European Journal of Plant Pathology 109: 479–488.
Mirzaei S., Goltapeh E.M., Shams-Bakhsh M. and Safaie N. 2008. Identification of Botrytis spp. on plants grown in Iran. Journal of Phytopathology 156: 21–28.
Nassr S. and Bakarat R. 2013. Effect of factors on conidium germination of Botrytis cinerea in vivo. International Journal of Plant and Soil Science 2: 41–54.
Nylander J.A.A. 2004. MrModeltest v2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
Plesken C., Weber R.W., Rupp S., Leroch M. and Hahn, M. 2015. Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant B. cinerea strains. Applied and Environmental Microbiology 81: 7048–7056.
Prasannath K. Shivas R.G. Galea V.J. Akinsanmi O.A. 2021. Novel Botrytis and Cladosporium species associated with flower diseases of Macadamia in Australia. Journal of Fungi 7: 898.
Rambaut A. 2019. FigTree, a graphical viewer of phylogenetic trees. Available from: http://tree.bio.ed.ac.uk/software/figtree.
Richards J.K., Xiao C.L., and Jurick W.M. 2021. Botrytis spp.: Acontemporary perspective and synthesis of recent scientific developments of a widespread genus that threatens global food security. Phytopathology 111: 432–436.
Rohlf F.J. 1998. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System version 2.02 User Guide.
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. and Huelsenbeck J.P. 2012. MrBayes 3: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
Rupp S., Plesken C., Rumsey S., Dowling M., Schnabel G., Weber R.W.S., Schnabel G., Weber, R.W.S. and Hahn M. 2017. Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance. Applied and Environmental Microbiology 83: e00269–17.
Sadeghi A., Atghia O. and Javan-Nikkhah M. 2018. Occurrence of Botrytis sinoviticola Zhang, Zhou & Li on pomegranate fruit. Proceedings of the 23rd Iranian Plant Protection Congress, Gorgan University of Agricultural Sciences and Natural Resources, p 440–441.
Saito S., Margosan D., Michailides T.J. and Xiao C.L. 2016. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Mycologia 108: 330–343.
Shaw M.W., Emmanuel C.J., Emilda D., Terhem R.B., Shafia A., Tsamaidi D., Emblow M. and van Kan J.A.L. 2016. Analysis of cryptic, systemic Botrytis infections in symptomless hosts. Frontiers in Plant Science 7: 625.
Shipunov A., Newcombe G., Raghavendra A.K.H. and Anderson C.L. 2008. Hidden diversity of endophytic fungi in an invasive plant. American Journal of Botany 95: 1096–1108.
Sowley E.N.K., Dewey F.M. and Shaw M.W. 2010. Persistent, symptomless, systemic, and seedborne infection of lettuce by Botrytis cinerea. European Journal of Plant Pathology 126: 61–71.
Staats M., van Baarlen P. and van Kan J.A.L. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution 22: 333–346.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
Testempasis S., Puckett R.D., Michailides T.J. and Karaoglanidis G.S. 2020. Genetic structure and fungicide resistance profile of Botrytis spp. populations causing postharvest gray mold of pomegranate fruit in Greece and California. Postharvest Biology and Technology 170: 111319.
Valero-Jiménez C.A., Veloso J., Staats M. and van Kan J.A.L. 2019. Comparative genomics of plant pathogenic Botrytis species with distinct host specificity. BMC Genomics 20: 203.
Walker A., Gautier A., Confais J., Martinho D. and Viaud M. 2011. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101: 1433–1445.
Walker A.-S. 2016. Diversity within and between species of Botrytis. pp. 91–125. In: Fillinger, S. and Elad, Y. (eds.). Botrytis–The Fungus, the Pathogen and its Management in Agricultural Systems. Springer International Publishing Switzerland.
Williamson B., Tudzynski B., Tudzinski P. and Vankan J.A. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology 8: 561–580.
Zhang J., Li G.Q. and Jiang D.H. 2009. First report of garlic leaf blight caused by Botrytis porri in China. Plant Disease 93: 1216.
Zhang J., Yang H., Yu Q., Wu M., Yang L., Zhuang W.Y., Chen W.D. and Li G.Q. 2016. Botrytis priformis sp. nov. a novel and likely saprophytic species of Botrytis. Mycologia 108: 682–696.
Zhang J., Zhang L., Li G.Q., Yang L., Jiang D.H., Zhuang W.Y. and Huang H.C. 2010. Botrytis sinoallii, a new species of the gray mold pathogen on Allium crops in China. Mycoscience 51: 421–431.
Zhang J., Zou Q., Li G.Q., Jiang D.H. and Huang H.C. 2008. First report of onion bulb rot caused by Botrytis aclada in China. Plant Disease 92: 1133.
Zhong S. and Steffenson B.J. 2001. Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91: 469–476.
Zhong S., Zhang J. and Zhang G.Z. 2019. Botrytis polyphyllae: a new Botrytis species causing gray mold on Paris polyphylla. Plant Disease 103: 1721–1727.
Zhou Y.J, Zhang J., Wang X.D., Yang L., Jiang D.H., Li G.Q., Hsiang T. and Zhuang W.Y. 2014. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China. Mycologia 106: 45–56.