Association of Botrytis cinerea species complex with small-seeded plants of blackberry, blueberry, raspberry, and kiwifruit in Guilan province, Iran

Document Type : Research Article

Authors

1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

2 Department of Horticulture Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

3 Department of Plant Protection Faculty o

Abstract

Botrytis cinerea Pers is one of the most important pathogens of stored fruits, vegetables, ornamental and greenhouse plants. This species can grow in various temperatures, from cool temperate to subtropical regions. In this study, blackberry (Rubus fruticosus L.), blueberry (Vaccinium corymbosum L.), and raspberry (Rubus idaeus L.) with the symptoms of leaf spot and stem from different orchards, as well as stored kiwi fruits (Actinidia chinensis Planch.) with the symptoms of fruit rot from cold stores in Guilan province were investigated. A total of 25 isolates with characteristics of the genus Botrytis spp. were obtained from blackberry (one isolate), raspberry (four isolates), blueberry (10 isolates), and kiwi fruits (10 isolates). Based on the combination of morphological characteristics and molecular data based on the partial sequence of G3PDH gene, all isolates were identified as Botrytis cinerea species complex. Based on these results, blackberry, blueberry, and raspberry plants are introduced as new hosts for this species complex in Iran.

Keywords


Abbey J.L., Percival D., Abbey L., Asiedu S.K., Prithiviraj B. and Schilder A. 2019. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges. Biocontrol Science and Biotechnology 3: 207–228. https://doi.org/10.1080/09583157.2018.1548574
Aktaruzzaman M.D., Afroz T., Hong S.J. and Kim B.S. 2017. Identification of Botrytis cinerea the cause of post- harvest gray mold on broccoli in Korea. Research in Plant Disease 23: 372–378. https://doi.org/10.5423/RPD.2017.23.4.372
Azevedo D.M., Martins S.D., Guterres D.C., Martins M.D., Araújo L., Guimarães L.M. and Furtado G.Q. 2020. Diversity, prevalence and phylogenetic positioning of Botrytis species in Brazil. Fungal Biology 124: 940–957. https://doi.org/10.1016/j.funbio.2020.08.002
Beever R.E. and Weeds P.L. 2007. Taxonomy and genetic variation of Botrytis and Botryotinia. pp. 29–52. In: Elad Y., Williamson B., Tudzynski P. and Delen N. (eds.). Botrytis: biology, pathology and control. Springer, Dordrecht, The Netherlands.
Bu S., Munir S., He P., Li Y., Wu Y., Li X., Kong B., He P. and He Y. 2021. Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biological Control 157: 104568. https://doi.org/10.1016/j.biocontrol.2021.104568
Chilvers M.I. and du Toit L.J. 2006. Detection and identification of Botrytis species associated with neck rot, scape blight, and umbel blight of onion. Plant Health Progress 7: 1. https://doi.org/10.1094/PHP-2006-1127-01-DG
Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J. and Foster G.D. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
Dissanayake A.J., Zhu J.T., Chen Y.Y., Maharachchikumbura S.S., Hyde K.D. and Liu J.K. 2024. A re-evaluation of Diaporthe: refining the boundaries of species and species complexes. Fungal Diversity 126: 1–125. https://doi.org/10.1007/s13225-024-00538-7
Dumin W., Seo Y.H., Park M.J., Park J.H. and Back C.G. 2020. First report of Botrytis cinerea causing grey mould disease of bush basil in Korea. New Disease Reports 41: 33. http://dx.doi.org/10.5197/j.2044-0588.2020. 041.03
Elad Y., Vivier M. and Fillinger S. 2016. Botrytis, the Good, the Bad and the Ugly. pp. 1–15. In: Fillinger S. and Elad Y. (eds.). Botrytis–the Fungus, the Pathogen and its Management in Agricultural Systems. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-23371-0_1
Ershad D. 2022. Fungi and fungal analogues of Iran. Ministry of Agriculture, Agricultural Research, Education and Extension Organization, Iranian Research Institute of Plant Protection, Iran. 695 pp.
Fekrikohan S., Sharifnabi B. and Javan-Nikkhah M. 2021. Genetic diversity of Botrytis cinerea isolates in different plant hosts and localities using ISSR molecular markers. Mycologia Iranica 8: 59–68. DOI:10.22043/MI.2022.357601.1209
Fekrikohan S., Atashi Khalilabad A., Fotouhifar Kh. and Sharifnabi B. 2022. First report or Botrytis cinerea and Alternaria alternate on Pelargonium grandiflorum in Iran. Mycologia Iranica 9: 105–115. Doi:10.22043/MI.2022.360139.1234
Harper L.A., Derbyshire M.C. and Lopez-Ruiz F.J. 2019. Identification and characterization of Botrytis medusae, a novel cryptic species causing grey mold on wine grapes in Australia. Plant Pathology 68: 939–953. https://doi.org/10.1111/ppa.13005
He S.Q., Wen Z.H., Bai B., Jing Z.Q. and Wang X.W. 2021. Botrytis polygoni, a new species of the genus Botrytis infecting Polygonaceae in Gansu, China. Mycologia 113: 78–91. https://doi.org/10.1080/00275514.2020.1809288
Hua L., Yong C., Zhanquan Z., Boqiang L., Guozheng Q. and Shiping T. 2018. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety 2(3): 111–119. https://doi.org/10.1093/fqsafe/fyy016
Hyde K.D., Nilsson R.H., Alias S.A., Ariyawansa H.A., Blair J.E., Cai L., de Cock A.W.A.M., Dissanayake A.J., Glockling S.L., Goonasekara I.D., Gorcza M., Hahn M., Jayawardena R.S., van Kan J.A.L., Laurence M.H., Léve C.A., Li X., Liu J.K., Maharachchikumbura S.S.N., Manamgoda D.S., Martin F.N., McKenzie E.H.C., McTaggart A.R., Mortimer P.E., Nair P.V.R., Pawłowska J., Rintoul T.L., Shivas R.G., Spies C.F.J., Summerell B.A., Taylor P.W.J., Terhem R.B., Udayanga D., Vaghefi N., Walther G., Wilk M., Wrzosek M., Xu J.C., Yan J. and Zhou N. 2014. One stop shop: backbones trees for important phytopathogenic genera: I: Botrytis. 2014. Fungal Diversity 67: 21–125. http://dx.doi.org/10.1007/s13225-014-0298-1
Katoh K., Rozewicki J. and Yamada K.D. 2019. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166. https://doi.org/10.1093/bib/bbx108
Kumar S., Stecher G. and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
Li X., Kerrigan J., Chai W. and Schnabel G. 2012. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104: 650–658. https://doi.org/10.3852/11-218
Liu Q., Li G., Li J. and Chen S. 2016. Botrytis eucalypti, a novel species isolated from diseased Eucalyptus seedlings in South China. Mycological Progress 15: 1057–1079. https://doi.org/10.1007/s11557-016-1229-1
Mirtalebi M. and Mostoefizade-Ghalamfarsa R. 2017. Integrated management of gray mold disease. Plant Pathology Science 6: 43–57. http://dx.doi.org/10.29252/pps.6.2.43
Mirzaei S., Mohammadi Goltapeh E. and Shams-bakhsh M. 2007. Taxonomical studies on the genus Botrytis in Iran. Journal of Agricultural Science and Technology 3: 65–76.
Mousakhah M., Jamali A., Khodaparast S.A. and Olia M. 2009. Identification of important Kiwi pathogenic fungi in Guilan Province. Master thesis. University of Shahrekord.
Nabizadeh H., Ahmadpour A. and Ghosta Y. 2021. Study on the diversity of Botrytis spp. isolated from different plants in West Azarbaijan Province and Sanadaj city (Kurdistan Province). Iranian Journal of Plant Pathology 57(3): 237–262. doi: 10.22034/ijpp.2022.546768.380
Naeimi S. and Zare R. 2014. Evaluation of indigenous Trichoderma spp. isolates in biological control of Botrytis cinerea, the causal agent of strawberry gray mold disease. Biocontrol in Plant Protection 1: 55–74. Doi:10.22092/BCPP.2013100609
Notte A.M., Plaza V., Marambio-Alvarado B., Olivaries-Urbina L., Problete-Morales M., Silva-Moreno M. and Castillo L. 2021. Molecular identification and characterization of Botrytis cinerea associated to the endemic flora of semi- desert climate in Chile. Current Research in Microbial Sciences 2: 100049. https://doi.org/10.1016/j.crmicr.2021.100049
Orozco-Mosqueda M.D.C., Kumar A., Fadiji A.E., Babalola O.O., Puopolo G. and Santoyo G. 2023. Agroecological management of the grey mould fungus Botrytis cinerea by plant growth-promoting bacteria. Plants 12: 12030637. https://doi.org/10.3390/plants12030637
Pereira D.S., Hilário S., Gonçalves M.F. and Phillips A.J. 2023. Diaporthe species on palms: molecular re-assessment and species boundaries delimitation in the D. arecae species complex. Microorganisms 11: 2717. https://doi.org/10.3390/microorganisms11112717
Poveda J., Barquero M. and González-Andrés M. 2020. Insight into the microbiological control strategies against Botrytis cinerea using systemic plant resistance activation. Agronomy 10: 1822. https://doi.org/10.3390/agronomy10111822
Prasannath K., Shivas R.G., Galea, V.J. and Akinsanmi O.A. 2021. Novel Botrytis and Cladosporium species associated with flower diseases of Macadamia in Australia. Journal of Fungi 7: 898. https://doi.org/10.3390/jof7110898
Richards J., Xiao C.L. and Jurick W.M. 2020. Botrytis spp.: a contemporary perspective and synthesis of recent scientific developments of a widespread genus that threatens global food security. Phytopathology. 111: 432–436. https://doi.org/10.1094/PHYTO-10-20-0475-IA
Saito S., Margosan D., Michailides T.J. and Xiao C.L. 2016. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Mycologia 108: 330–343. https://doi.org/10.3852/15-165
Schroeder C.A. and Fletcher W.A. 1967. The Chinese gooseberry (Actinidia chinensis) in New Zealand. Economic Botany 21: 81–92.
Silvestro D and Michalak I. 2012. raxmlGUI: A graphical front-end for RAxML. Organisms, Diversity & Evolution 12(4): 335–337. https://doi.org/10.1007/s13127-011-0056-0
Singh R., Caseys C. and Kliebenstein D.J. 2023. Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea. Molecular Plant Pathology 25: e13404. https://doi.org/10.1111/mpp.13404
Staats M., van Baarlen P. and van Kan J.A.L. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution 22: 333–346. https://doi.org/10.1093/molbev/msi020
Staats M., van Baarlen P., Schouten A., van Kan J.A.L. and Bakker F.T. 2007. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genetics and Biology 44: 52–63. https://doi.org/10.1016/j.fgb.2006.07.003
Stamatakis A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Taheri H., Fifaii R. and Ershad J. 2008. Identification of fungus agents that cause kiwi fruit rots in cool storages. Pajouhesh & Sazandegi 81: 34–39.
Williamson B., Tudzynski B., Tudsynski P. and Van Kan J.A.L. 2007. Botrytis cinerea: the cause of grey mould disease. Molecular Plant Disease 8: 561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
Zhang Y.J., Zhang S., Liu X., Wen H.A. and Wang M. 2010. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in Applied Microbiology 51(1): 114–118. https://doi.org/10.1111/j.1472-765X.2010.02867.x
Zhang J., Yang H., Yu Q., Wu M., Yang L., Zhuang W.Y., Chen W.D. and Li G.Q. 2016. Botrytis priformis sp. nov. a novel and likely saprophytic species of Botrytis. Mycologia 108: 682–696. https://doi.org/10.3852/15-340
Zhong S., Zhang J. and Zhang G.Z. 2019. Botrytis polyphyllae: a new Botrytis species causing gray mold on Paris polyphylla. Plant Disease 103: 1721–1727. https://doi.org/10.1094/PDIS-07-18-1284-RE
Zhou Y.J., Zhang J., Wang X.D., Yang L., Jiang D.H., Li G.Q., Hsiang T. and Zhuang W.Y. 2014. Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (Vitis vinifera) in China. Mycologia 106: 45–56. https://doi.org/10.3852/13-032