Abbey J.L., Percival D., Abbey L., Asiedu S.K., Prithiviraj B. and Schilder A. 2019. Biofungicides as alternative to synthetic fungicide control of grey mould (
Botrytis cinerea) – prospects and challenges. Biocontrol Science and Biotechnology 3: 207–228.
https://doi.org/10.1080/09583157.2018.1548574
Aktaruzzaman M.D., Afroz T., Hong S.J. and Kim B.S. 2017. Identification of
Botrytis cinerea the cause of post- harvest gray mold on broccoli in Korea. Research in Plant Disease 23: 372–378.
https://doi.org/10.5423/RPD.2017.23.4.372
Azevedo D.M., Martins S.D., Guterres D.C., Martins M.D., Araújo L., Guimarães L.M. and Furtado G.Q. 2020. Diversity, prevalence and phylogenetic positioning of
Botrytis species in Brazil. Fungal Biology 124: 940–957.
https://doi.org/10.1016/j.funbio.2020.08.002
Beever R.E. and Weeds P.L. 2007. Taxonomy and genetic variation of Botrytis and Botryotinia. pp. 29–52. In: Elad Y., Williamson B., Tudzynski P. and Delen N. (eds.). Botrytis: biology, pathology and control. Springer, Dordrecht, The Netherlands.
Bu S., Munir S., He P., Li Y., Wu Y., Li X., Kong B., He P. and He Y. 2021.
Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by
Botrytis cinerea. Biological Control 157: 104568.
https://doi.org/10.1016/j.biocontrol.2021.104568
Chilvers M.I. and du Toit L.J. 2006. Detection and identification of
Botrytis species associated with neck rot, scape blight, and umbel blight of onion. Plant Health Progress 7: 1.
https://doi.org/10.1094/PHP-2006-1127-01-DG
Dean R., Van Kan J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J. and Foster G.D. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414–430.
https://doi.org/10.1111/j.1364-3703.2011.00783.x
Dissanayake A.J., Zhu J.T., Chen Y.Y., Maharachchikumbura S.S., Hyde K.D. and Liu J.K. 2024. A re-evaluation of
Diaporthe: refining the boundaries of species and species complexes. Fungal Diversity 126: 1–125.
https://doi.org/10.1007/s13225-024-00538-7
Elad Y., Vivier M. and Fillinger S. 2016.
Botrytis, the Good, the Bad and the Ugly. pp. 1–15. In: Fillinger S. and Elad Y. (eds.).
Botrytis–the Fungus, the Pathogen and its Management in Agricultural Systems. Springer International Publishing Switzerland.
https://doi.org/10.1007/978-3-319-23371-0_1
Ershad D. 2022. Fungi and fungal analogues of Iran. Ministry of Agriculture, Agricultural Research, Education and Extension Organization, Iranian Research Institute of Plant Protection, Iran. 695 pp.
Fekrikohan S., Sharifnabi B. and Javan-Nikkhah M. 2021. Genetic diversity of Botrytis cinerea isolates in different plant hosts and localities using ISSR molecular markers. Mycologia Iranica 8: 59–68. DOI:10.22043/MI.2022.357601.1209
Fekrikohan S., Atashi Khalilabad A., Fotouhifar Kh. and Sharifnabi B. 2022. First report or Botrytis cinerea and Alternaria alternate on Pelargonium grandiflorum in Iran. Mycologia Iranica 9: 105–115. Doi:10.22043/MI.2022.360139.1234
Harper L.A., Derbyshire M.C. and Lopez-Ruiz F.J. 2019. Identification and characterization of
Botrytis medusae, a novel cryptic species causing grey mold on wine grapes in Australia. Plant Pathology 68: 939–953.
https://doi.org/10.1111/ppa.13005
Hua L., Yong C., Zhanquan Z., Boqiang L., Guozheng Q. and Shiping T. 2018. Pathogenic mechanisms and control strategies of
Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety 2(3): 111–119.
https://doi.org/10.1093/fqsafe/fyy016
Hyde K.D., Nilsson R.H., Alias S.A., Ariyawansa H.A., Blair J.E., Cai L., de Cock A.W.A.M., Dissanayake A.J., Glockling S.L., Goonasekara I.D., Gorcza M., Hahn M., Jayawardena R.S., van Kan J.A.L., Laurence M.H., Léve C.A., Li X., Liu J.K., Maharachchikumbura S.S.N., Manamgoda D.S., Martin F.N., McKenzie E.H.C., McTaggart A.R., Mortimer P.E., Nair P.V.R., Pawłowska J., Rintoul T.L., Shivas R.G., Spies C.F.J., Summerell B.A., Taylor P.W.J., Terhem R.B., Udayanga D., Vaghefi N., Walther G., Wilk M., Wrzosek M., Xu J.C., Yan J. and Zhou N. 2014. One stop shop: backbones trees for important phytopathogenic genera: I:
Botrytis. 2014. Fungal Diversity 67: 21–125.
http://dx.doi.org/10.1007/s13225-014-0298-1
Katoh K., Rozewicki J. and Yamada K.D. 2019. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160–1166.
https://doi.org/10.1093/bib/bbx108
Kumar S., Stecher G. and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.
https://doi.org/10.1093/molbev/msw054
Li X., Kerrigan J., Chai W. and Schnabel G. 2012.
Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104: 650–658.
https://doi.org/10.3852/11-218
Liu Q., Li G., Li J. and Chen S. 2016.
Botrytis eucalypti, a novel species isolated from diseased
Eucalyptus seedlings in South China. Mycological Progress 15: 1057–1079.
https://doi.org/10.1007/s11557-016-1229-1
Mirzaei S., Mohammadi Goltapeh E. and Shams-bakhsh M. 2007. Taxonomical studies on the genus Botrytis in Iran. Journal of Agricultural Science and Technology 3: 65–76.
Mousakhah M., Jamali A., Khodaparast S.A. and Olia M. 2009. Identification of important Kiwi pathogenic fungi in Guilan Province. Master thesis. University of Shahrekord.
Nabizadeh H., Ahmadpour A. and Ghosta Y. 2021. Study on the diversity of Botrytis spp. isolated from different plants in West Azarbaijan Province and Sanadaj city (Kurdistan Province). Iranian Journal of Plant Pathology 57(3): 237–262. doi: 10.22034/ijpp.2022.546768.380
Naeimi S. and Zare R. 2014. Evaluation of indigenous Trichoderma spp. isolates in biological control of Botrytis cinerea, the causal agent of strawberry gray mold disease. Biocontrol in Plant Protection 1: 55–74. Doi:10.22092/BCPP.2013100609
Notte A.M., Plaza V., Marambio-Alvarado B., Olivaries-Urbina L., Problete-Morales M., Silva-Moreno M. and Castillo L. 2021. Molecular identification and characterization of
Botrytis cinerea associated to the endemic flora of semi- desert climate in Chile. Current Research in Microbial Sciences 2: 100049.
https://doi.org/10.1016/j.crmicr.2021.100049
Orozco-Mosqueda M.D.C., Kumar A., Fadiji A.E., Babalola O.O., Puopolo G. and Santoyo G. 2023. Agroecological management of the grey mould fungus
Botrytis cinerea by plant growth-promoting bacteria. Plants 12: 12030637.
https://doi.org/10.3390/plants12030637
Pereira D.S., Hilário S., Gonçalves M.F. and Phillips A.J. 2023.
Diaporthe species on palms: molecular re-assessment and species boundaries delimitation in the
D. arecae species complex. Microorganisms 11: 2717.
https://doi.org/10.3390/microorganisms11112717
Poveda J., Barquero M. and González-Andrés M. 2020. Insight into the microbiological control strategies against
Botrytis cinerea using systemic plant resistance activation. Agronomy 10: 1822.
https://doi.org/10.3390/agronomy10111822
Prasannath K., Shivas R.G., Galea, V.J. and Akinsanmi O.A. 2021. Novel
Botrytis and
Cladosporium species associated with flower diseases of
Macadamia in Australia. Journal of Fungi 7: 898.
https://doi.org/10.3390/jof7110898
Richards J., Xiao C.L. and Jurick W.M. 2020.
Botrytis spp.: a contemporary perspective and synthesis of recent scientific developments of a widespread genus that threatens global food security. Phytopathology. 111: 432–436.
https://doi.org/10.1094/PHYTO-10-20-0475-IA
Saito S., Margosan D., Michailides T.J. and Xiao C.L. 2016.
Botrytis californica, a new cryptic species in the
B. cinerea species complex causing gray mold in blueberries and table grapes. Mycologia 108: 330–343.
https://doi.org/10.3852/15-165
Schroeder C.A. and Fletcher W.A. 1967. The Chinese gooseberry (Actinidia chinensis) in New Zealand. Economic Botany 21: 81–92.
Singh R., Caseys C. and Kliebenstein D.J. 2023. Genetic and molecular landscapes of the generalist phytopathogen
Botrytis cinerea. Molecular Plant Pathology 25: e13404.
https://doi.org/10.1111/mpp.13404
Staats M., van Baarlen P. and van Kan J.A.L. 2005. Molecular phylogeny of the plant pathogenic genus
Botrytis and the evolution of host specificity. Molecular Biology and Evolution 22: 333–346.
https://doi.org/10.1093/molbev/msi020
Staats M., van Baarlen P., Schouten A., van Kan J.A.L. and Bakker F.T. 2007. Positive selection in phytotoxic protein-encoding genes of Botrytis species. Fungal Genetics and Biology 44: 52–63.
https://doi.org/10.1016/j.fgb.2006.07.003
Taheri H., Fifaii R. and Ershad J. 2008. Identification of fungus agents that cause kiwi fruit rots in cool storages. Pajouhesh & Sazandegi 81: 34–39.
Zhang Y.J., Zhang S., Liu X., Wen H.A. and Wang M. 2010. A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in Applied Microbiology 51(1): 114–118.
https://doi.org/10.1111/j.1472-765X.2010.02867.x
Zhang J., Yang H., Yu Q., Wu M., Yang L., Zhuang W.Y., Chen W.D. and Li G.Q. 2016.
Botrytis priformis sp. nov. a novel and likely saprophytic species of
Botrytis. Mycologia 108: 682–696.
https://doi.org/10.3852/15-340
Zhou Y.J., Zhang J., Wang X.D., Yang L., Jiang D.H., Li G.Q., Hsiang T. and Zhuang W.Y. 2014. Morphological and phylogenetic identification of
Botrytis sinoviticola, a novel cryptic species causing gray mold disease of table grapes (
Vitis vinifera) in China. Mycologia 106: 45–56.
https://doi.org/10.3852/13-032