Abdellatif E., Kałużna M., Ferrante P., Scortichini M., Bahri B., Janse J.P., van Vaerenberg J, Baeyen S., Sobiczewski P. and Rhouma A. 2020. Phylogenetic, genetic, and phenotypic diversity of Pseudomonas syringae pv. syringae strains isolated from citrus blast and black pit in Tunisia. Plant Pathol. 69: 1414–1425. DOI: 10.1111/ppa.13244.
Abdellatif E., Kaluzna M., Janse J.D., Sobiczewski P., Helali F., Lamichhane J.R. and Rhouma A. 2017. Phenotypic and genetic characterization of Pseudomonas syringae strains associated with the recent citrus bacterial blast and black pit epidemics in Tunisia. Plant Pathology 66: 1082-1093. DOI: 10.1111/ ppa.12654.
Agrios G.N. 2005. Plant Pathology. 5th ed. New York: Academic Press. 952 p.
Anonymous. 2021. Statistical Yearbook, World Food and Agriculture Organization of the United Nations, Italy. 368p. DOI: 10.4060/cb4477en.
Araki H., Tian D., Goss E.M., Jakob K., Halldorsdottir S.S., Kreitman M. and Bergelson J. 2006. Presence/absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis. Proceedings of the National Academy of Sciences of the United States 103: 5887- 5892. DOI: 10.1073/pnas.0601431103.
Baltrus D.A., McCann H.C. and Guttman D.S. 2017. Evolution, genomics and epidemiology of Pseudomonas syringae. Molecular Plant Pathology 18: 152-168. DOI: 10.1111/mpp.12506.
Bartoli C., Berge O., Monteli C.L., Guilbaud C., Balestra G.M., Varvaro L., Jones C., Baltrus D.A., Sands D.C. and Morris C.E. 2014. The Pseudomonas viridiflava phylogroups in the P. syringae species are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits. Environmental Microbiology 16: 2301-2315. DOI: 10.1111/1462-2920.12433.
Beiki F., Busquets A., Gomila M., Rahimian H., Lalucat J. and Garcia-Valdes E. 2016. New Pseudomonas spp. are pathogenic to citrus. PLoS One 11(2): e0148796. DOI: 10.1371/journal.pone.0148796.
Beiki F., Mohammadi E., Rahimian H., Shams Bakhsh M., Barzegar A., Busquet A. and Lalucat J. 2015. Biological control of citrus blast disease using some yeast strains isolated from citrus orchards in the northern provinces of Iran. Biological Control of Plant Pathogens 11: 1-14. DOI: 10.22092/BCPP.2015.100 599.
Beiki F., Rahimian H., Mohammadi E., Shams Bakhsh M., Barzegar A., Busquet A., Garcia-Valdes E. and Lalucat J. 2013. Phenotypic and pathogenicity characteristics of the agents causing citrus blast disease in the northern provinces of Iran. Iranian J. Plant Protection Science 43:211-222. Magiran.com/p1114809.
Busquets A., Gomila M., Beiki F., Mulet M., Rahimian H., Garcia-Valdes E. and Lalucat J. 2017. Pseudomonas caspiana sp. No., a citrus pathogen in the Pseudomonas syringae phylogenetic group. Systematic Applied Microbiology 40: 266-273. DOI: 10.1016/j.syapm.2017.04.002.
Cabrefiga J., Francés J., Montesinos E. and Bonaterra A. 2011. Improvement of Fitness and Efficacy of a Fire Blight Biocontrol Agent via Nutritional Enhancement Combined with Osmoadaptation. Applied and Environmental Microbiology 77: 3174-81. DOI: 10.1128/AEM.02760-10.
Cariddi, C., Gerin, D., Bruno, G.L., Angelini, R.M.D.M., Faretra, F. and Pollastro, S. 2025. Occurrence of atypical Pseudomonas viridiflava strains on different host plants in southern Italy. Plant Pathology 74(2): 443-454. DOI: 10.1111/ppa.14030.
Cetinkaya Yildiz R., Karatas A., Horuz S. and Aysan Y. 2022. Determination of susceptibility of citrus and stone fruit cultivars against Pseudomonas syringae pv. syringae in Turkey. Gesunde Pflanzen. DOI: 10.1007/ s 10343-022-00638-x.
Dagher F., Olishevska S., Philion V., Zheng J. and Déziel E. 2020. Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon 19: 6(10). DOI: 10.1016/j.heliyon.2020.e05222.
DeWolfe T.A., Meith H.C., Paulus A.O., Shibuya F., Klotz L.J., Jeter R.B. and Garber M.J. 1966. Control of citrus blast in northern California. California Agriculture 20: 12-13.
Dillon M.M., Ruiz-Bendoya T., Bundalovic-Torma C., Guttman K.M., Kwak H., Middleton M.A., Wang P.W., Huroz S., Aysan Y. and Guttman D.S. 2021. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microbial Genomics 7: 000585. DOI: 10.1099/mgen.0.000585.
Eskalen A. and Adaskaveg J.E. 2019. Bacterial blast (Citrus Blast). UC IPM Pest Management Guidelines: Citrus. UC ANR Publication 3441. Riverside, California: University of California. 2 p.
Fravel D.R. 2005. Commercialization and implementation of biocontrol. Annual Review of Phytopathology 43: 337-359. DOI: 10.1146/annurev.phyto.43.032904.092924.
Gonzalez C.F., De Vey J.E. and Wakeman R.J. 1981. Syringotoxin: a phytotoxine unique to citrus isolates of
Pseudomonas syringae. Physiological Plant Pathology 18: 41-50. DOI:
10.1016/S0048-4059(81)80052-5.
Islam M.S., Sultana R., Hasan M.A., Alam M.S, Sikdar B., Kamaruzzaman M. and Islam M.A. 2020. Characterization and biocontrol measures of Pseudomonas syringae pv. syringae associated with citrus blast disease. Vegetos. 22 July, 15 p. DOI: 10.1007/s42535-020-00138-1.
Islam M.S., Sultana R., Jahan M.S., Islam F., Sikdar B., Khalekuzzaman M., Kumar U., Jee A., Hasan M.F. and Islam M.A. 2017. Isolation and biochemical characterization of Pseudomonas syringae causing citrus blast disease and its sensitivity tests against some antibiotics. International J. of Scientific and Engineering Research 8: 1435-1441.
Ivanovic Z., Perovic T., Popovic T., Blagojevic J., Trkulja N. and Hrncic S. 2017. Characterization of Pseudomonas syringae pv. syringae, causal agent of citrus blast of mandarin in Montenegro. Plant Pathology J. 33: 23-33. DOI: 10.5423/ PPJ.OA.08.2016.0161.
Jones D.A. and Kerr A. 1989. Agrobacterium radiobacter Strain K1026, a Genetically Engineered Derivative of Strain K84, for Biological Control of Crown Gall. Plant Dis. 73: 15-18.
Kennelly M.M., Cazorla F.M., DeVicente A., Ramos C. and Sundin G.W. 2007. Pseudomonas syringae diseases of fruit trees: Progress toward understanding and control. Plant Disease 91: 4-15. DOI: 10.1094/PD-91-0004.
Kim J.G., Park B.K., Kim S.U., Choi D., Nahm B.H., Moon J.S., Reader J.S., Farrand S.K. and Hwang I. 2006. Bases of biocontrol: Sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proceedings of National Academy of Sciences of the U.S. 103: 8845-8851. DOI: 10.1073/pnas.0602965103.
Lamichhane J.R., Messean A. and Morris C.E. 2015. Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. J. General Plant Pathology 81: 331-350. DOI: 10.1007/s10327-015-0605-z.
Lamichhane J.R., Osdaghi E., Behlau F., Koel J., Jones J.B. and Aubertot J.N. 2018. Thirteen decades of antimicrobial copper compounds applied in agriculture, a review. Agronomy for Sustainable Development 38: 28, 18 p. DOI: 10.1007/s13593-018-0503-9
Liao C.H., Hung H.U. and Chatterjee A.K. 1988. An extracellular pectate lyase is the pathogenicity factor of the soft-totting bacterium Pseudomonas viridiflava. Molecular Plant-Microbe Interactions 1:199- 206.
Lipps S.M. and Samac D.A. 2022. Pseudomonas viridiflava: An internal outsider of the Pseudomonas syringae species complex. Molecular Plant Pathology 23: 3-15. DOI: 10.1111/mpp.13133.
Mirik M., Baloglu S., Aysan Y., Cetinkaya-Yildiz R., Kusek M. and Sahin F. 2005. First outbreak and occurrence of citrus blast disease, caused by Pseudomonas syringae pv. syringae, on orange and mandarin trees in Turkey. Plant Pathology 54: 238. DOI: 10.1111/ j.1365-3059.2005. 01134.x.
Mougou, I. 2022. Citrus blast and black pit disease: A review. DYSONA - Life Science 3(1) 1-6 p. DOI: 10.30493/dls.2022.323591.
Mougou I. and Boughaleb-M`hamdi N. 2018. Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egyptian J. Biological Pest Control 28: 60. DOI; 10.1186/s41938-018-0061-0.
Pinheiro L.A.M., Preira C., Frazao C., Balcao V.M. and Almeida A. 2019. Efficiency of φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in vitro preliminary study. Microorganisms 7: 286, 23 p. DOI: 10.3390/microorganisms.7090286.
Queslati M., Mulet M., Gomila M., Berg O., Hajlaoui M.R., Lalucat J., Sadfi-Zouaoui N. and Garcia-Valdes E. 2019. New species of pathogenic Pseudomonas isolated from citrus in Tunisia: Proposal of Pseudomonas kairouanensis sp. nov. and Pseudomonas nabeulensis sp. nov. Systematic and Applied Microbiology 42: 348-359. DOI: 10.1016/j.syapm.2019.03.002.
Queslati M., Mulet M., Zouaoui M., Chandeysson C., Lalucat J., Hajlaoui M.R., Berge O., Garcia-Valdes E. and Sadfi-Zouaoui N. 2020. Diversity of pathogenic Pseudomonas isolated from citrus in Tunisia. AMB Express 10: 198. DOI; 10.1186/s13568-020-01134-z.
Rahimian H. 1994. Bacterial leaf spot of basil. Iranian J. Plant Pathology 33: 37-38.
Reuther W., Calavan E.C. and Carman G.E., editors. 1989. The Citrus Industry. Vol V. Oakland, California: Division of Agriculture and Natural Resources, University of California. 374 p.
Ruinelli M., Blom J., Smits T.H.M. and Pothier J.F. 2022. Comparative genomics of Prunus-associated members of Pseudomonas syringae species complex reveals traits supporting co-evolution and host adaptation. Frontiers in Microbiology 13: 1-15. DOI: 10.3389/fmicb.2022.804681.
Shams Bakhsh M. and Rahimian H. 1997. Comparative study on agents of citrus blast and bacterial canker of stone fruits in Mazandaran. Iran. J. Plant Pathology 33: 44-47.
Timmer L.W., Garnsey S.M. and Graham J.H. 2000. Compendium of Citrus Diseases. 2nd ed. American Phytopathological Society Press, St. Paul, Minnesota, USA. DOI: 10.1094/ 9780890545850.
Zaheer, I., Iram, S., Noreen, S., Mahmood, S., Bibi, A., Ahmad, A. and Kaushik, P. 2024. Molecular based associations of bacterial pathogens with citrus: Implications for toxicology and disease management. Journal of King Saud University-Science 36: 103185. DOI: 10.1016/j.jksus.2024.103185