Aiello D., Ferrante P., Vitale A., Polizzi G., Scortichini and Cirvilleri M. G. 2015. Characterization of
Pseudomonas syringae pv.
syringae isolated from mango in sicily and occurrence of copper-resistant strains. Plant Pathology 97(2): 273–282. DOI:
10.4454/JPP.V97I2.015
Agrios G. N. 2005. Plant Pathology. Elsevier Academic Press: Burlington, Ma. USA.
Amanifar N. 2019.
Pseudomonas marginalis: as a potential pathogen of greenhouse grown plants and crops with sprinkler irrigation. Iranian Journal of Plant Pathology
(55): 87-104. (In Persian with English abstract). Doi:
10.22034/ijpp.2019.37317
Amanifar N. 2020a. Winter sunscald as a predisposing factor for bacterial canker of almond and peach trees in Chaharmahal va Bakhtiari province. Applied Entomology and Phytopathology 88: 113-123. (In Persian with English abstract).
doi.org/10.22092/ jaep.2020.341697.1325
Amanifar N. 2020b. Evaluation of the Efficacy of Some Chemical Compounds in the Control of Peach Bacterial Canker. Journal of Pesticides in Plant Protection Sciences 9(1)
: 11-26. (In Persian with English abstract).
doi. 10.22092/jppps.2020.125441
Amanifar N. 2023. Synergistic effect of Mesocriconema xenoplax in the creation of bacterial canker of peach by Pseudomonas syringae pv. syringae. Iranian Journal of Plant Protection Science, 54 (2): 47-58. (In Persian with English abstract). doi.org/10.22059/IJPPS.2023.354890.1007020
Andersen G. L., Menkissoglou O. and Lindow S. E. 1991. Occurrence and properties of copper-tolerant strains of Pseudomonas syringae isolated from fruit trees in California. Phytopathology 81:648-656.
Arnesano F., Banci L., Bertini I. and Thompsett A.R. 2002. Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure 10(10): 1337–1347.
Bondarczuk K. and Piotrowska-Seget Z. 2013. Molecular basisof active copper resistance mechanisms in gram-negativebacteria. Cell Biology and Toxicology 29(6): 397–405. doi.10.1007/s10565-013-9262-1
Cao T., R.A. Duncan B.C. Kirkpatrick Shackel K.A. and Dejong T.M. 2013. Effect of calcium and nitrogen fertilization on bacterial canker susceptibility in stone fruits
. Fruits 68: 245–254.
doi.org/10.1051/fruits/2013071
Carvalho R., Duman K., Jones J.B. and Paret M.L. 2019. Bactericidal Activity of Copper-Zinc Hybrid Nanoparticles on Copper-Tolerant Xanthomonas perforans. Scientific Reports 9: 20124.https://doi.org/10.1038/s41598-019-56419-6
Cazorla F. M., Arrebola E., Sesma A., Pérez-García A., Codina J. C., Murillo J. and de Vicente A. 2002. Copper resistance in
Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids. Phytopathology 92:909-916. doi
10.1038/s41598-019-56419-6
Cha J.S. and Cooksey D.A. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915–8919
Conover R.A. and Gerhold N.R. 1981. Mixtures of copper and maneb or mancozeb for control of bacterial spot of tomato and their compatibility for control of fungus diseases. Proc. Fla. State Hortic. Soc. 94: 154-156.
Fan X., Saleem T. and Zou H. 2022.Copper resistance mechanisms in plant pathogenic bacteria. Phytopathologia Mediterranea 61
: 129-138.
doi.org/10.36253/phyto-13282
Husseini A. and Akköprü A. 2020. The possible mechanisms of copper resistance in the pathogen
Pseudomonas syringae pathovars in stone fruit trees
. Phytoparasitica 48:705–718. doi:
10.1007/s12600-020-00828-1
Ladomerskyab E. and Petris M. J. (2015). Copper tolerance and virulence in bacteria. Metallomics
7
: 957–964. doi:
10.1039/c4mt00327f
Lamichhane J. R., Messéan A. and Morris C. E. 2015 . Insights into epidemiology and control of diseases of annual plants caused by the
Pseudomonas syringae species complex. Journal of General Plant Pathology 81
: 331-50 DOI:
10.1007/s10327- 015-0605-z
Lee Y.A., Schroth M. N., Hendson M.,Lindow S. E., Wang X.-L., Olson B.,Buchner R. P. and Teviotdale B. 1993. Increased toxicity of iron-amended coppercontaining bactericides to the walnut blight pathogen Xanthomonas campestris pv. juglandis. Phytopathology 83:1460-1465.
Lee S., Cheon w., Tae Kwon H., Lee Y., Kim J., Balaraju K. and Jeon Y. 2023. Identification and Characterization of Pseudomonas syringae pv. syringae, a causative bacterium of apple canker in Korea. Plant Pathology Journal 39(1): 88-107.
Malik A. and Jaiswal R. 2000. Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology and Biotechnology 16: 177–182.
Medhekar S. and. Boparai K.S 1981. Fungicidal bis (1-amidino-Oethylisourea) copper (II) carbamates. J. Agric. Food Chem 29: 421-422.
Menkissoglu O. and Lindow S. E. 1991. Chemical forms of copper on leaves in relation to the bactericidal activity of cupric hydroxide deposits on plants. Phytopathology 81:1263-1270.
Mojtahedi H. and Lownsbery B.F. 1976. The effects of ammonia-generating fertilizer on Criconemoides xenoplax in pot cultures. Journal Nematology 8:306–309.
Montesinos E. and Vilardell P. 2001. Effect of bactericides, phosphonates and nutrient amendments on blast of dormant flower buds of pear: a field evaluation for disease control. European Journal of Plant Pathology, 107: 787–794. doi.org/10.1023/A:1012422116116
Nakajima M., Goto M. and Hibi T. 2002. Similarity between copper resistance genes from Pseudomonas syringae pv. actinidiae and P. syringae pv. tomato. Journal of General Plant Pathology 68(1): 68–74. doi.org/10.1007/PL00013056
Parsons I. M. and Edgington L. V. 1991. The possible role of fixed coppers in combination with ethylene bis-dithiocarbamate for control of Pseudomonas syringae pv. tomato. (Abstr.) Phytopathology 71:563.
Pernezny K., Nagata R., Havranek N. and Sanchez J. 2008. Comparison of two culture media for determination of the copper resistance of
Xanthomonas strains and their usefulness for prediction of control with copper bactericides
. Crop Protection 27: 256-262.
10.1016/j.cro pro.2007.05.012
Ritchie D. F. and Bennett M. H. 1991. Impact of copper and additives to copper on pepper yield in the presence of copper-sensitive and -resistant bacterial pathogen strains. Fungic. Nematicide Tests 47:105-106.
SAS. (2004). The SAS Systeme for windows 9.1 SAS Institute Inc, Cary, NC, U.S.A.
Scheck H.J. and Pscheidt J.W 1998. Effect of copper bactericides on copper resistant and sensitive strains of Pseudomonas syringae pv. syringae. Plant Disease 82: 397-406.
Spotts R. A. and Cervantes L. A. 1995. Copper, oxytetracycline, and streptomycin resistance of Pseudomonas syringae pv. syringae strains from pear orchards in Oregon and Washington. Plant Disease 79:1132-1135.
Sundin G. W., Jones A. L. and Fulbright D. W. 1989. Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in-vitro and in planta with
a plasmid. Phytopathology 79(8): 861–865.
Wimalajeewa D.L.S., Cahill R., Hepworth G., Schneider H.G. and Washbourne J.W. 1991. Chemical control of bacterial canker (Pseudomonas syringae pv. syringae) of apricot and cherry in Victoria. Australian Journal of Experimental Agriculture 31: 705 – 708.
Zhang S., Fu, Y., Mersha Z. and Pernezny K. 2017. Assessment of copper resistance in
Pseudomonas syringae pv.
phaseolicola, the pathogen of halo blight on snap bean. Crop Protection 98: 8-15. doi:
10.1016/j.cropro.2017.03.009