اثر کاربرد تلفیقی باکتری Pseudomonas fluorescens CHA0 و کودهای شیمیایی بر فعالیّت نماتود ریشه‏گرهی Meloidogyne incognita در گیاه گوجه‏فرنگی آلوده به آن در شرایط گلخانه

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانش آموخته بخش گیاه‏پزشکی دانشکده کشاورزی، دانشگاه شیراز

2 استاد بیماری‏شناسی گیاهی، بخش گیاه‏پزشکی دانشکده کشاورزی، دانشگاه شیراز

چکیده

تأثیر کودهای شیمیایی بر فعالیّت نماتود ریشه‏گرهی Meloidogyne incognita و جدایه Pseudomonas fluorescens CHA0 در شرایط آزمایشگاه مورد بررسی قرار گرفت. نتایج نشان داد که کودهای شیمیایی باعث افزایش 0/67-8/94% مرگ‏ومیر لارو سن دو و کاهش 8/43-8/80% تفریخ تخم نماتود نسبت به شاهد شدند ولی مانع رشد باکتری روی محیط کشت NA + کود و LB + کود نشدند. تأثیر کودهای شیمیایی در تلفیق با باکتری بر فعالیّت نماتود و شاخص‏های رشدی گیاه گوجه‏فرنگی رقم ارلی‏اربانا آلوده به آن، در سه آزمون مجزا در خاک سترون در گلخانه مورد بررسی قرار گرفت. نتایج نشان داد که کودهای سوپرفسفات‏تریپل، گوگرد، سولفات ‏روی و سولفات‏ مس در تلفیق با باکتری باعث افزایش معنی‏دار شاخص‏های رشدی گوجه‏فرنگی در مقایسه با شاهد شدند. در آزمون اول، کاربرد باکتری و 50 میلی‏گرم/کیلوگرم نیتروژن (منبع اوره) باعث کاهش 9/54% و 3/67% تعداد گال و کیسه تخم/گرم ریشه، و تیمار باکتری با 10 میلی‏گرم فسفر باعث کاهش 18% فاکتور تولیدمثل نماتود گردید. در آزمون دوم، تعداد گال و تعداد کیسه تخم/گرم ریشه در تیمار باکتری و پنج میلی‏گرم/کیلوگرم مس به ترتیب، 2/83% و 6/80% کاهش یافت. همچنین تیمار باکتری و نیتروژن 100 میلی‏گرم/کیلوگرم باعث کاهش 7/81% فاکتور تولیدمثل گردید. در آزمون سوم تیمار باکتری و پنج میلی‏گرم/کیلوگرم مس به ترتیب، باعث کاهش 7/74% و 2/81% تعداد گال و تعداد کیسه تخم/گرم ریشه شد. همچنین تیمار باکتری و 100 میلی‏گرم/کیلوگرم نیتروژن باعث کاهش 7/67% فاکتور تولیدمثل گردید. بیشترین افزایش شاخص‏های رشدی گیاه و کاهش شاخص‏های نماتود از کاربرد باکتری و سولفات‏مس حاصل شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of combined application of Pseudomonas fluorescens CHA0 and chemical fertilizers on the activity of root-knot nematode, Meloidogyne incognita, and infected tomato plant in greenhouse*

نویسندگان [English]

  • M. Saedi 1
  • A. Karegar 2
  • S.M. Taghavi 2
چکیده [English]

Effects of chemical fertilizers on Meloidogyne incognita activity and Pseudomonas fluorescens CHA0 were studied in vitro. The results showed that the chemical fertilizers increased 67.0-94.8% mortality of the second stage juveniles and decreased 43.8-80.8% egg hatching of the nematode, but did not inhibit the bacterium growth on NA and LB culture + fertilizer. Effect of combined application of P. fluorescens CHA0 and chemical fertilizers, on the activity of M. incognita and growth indices of infected tomato plant cv. Early Urbana was studied in greenhouse in three turns. Results showed that application of triple superphosphate, sulphur, zinc sulphate and copper sulphate in combination with P. fluorescnse CHA0 significantly increased the growth parameters of tomato plants. In the first trial, combination of the bacterium with 50 mg/kg of nitrogen (urea) caused 54.9% and 67.3% reductions in galls and egg masses/gram of root, respectively, and with 10 mg/kg of phosphorus caused 18% reduction in reproduction factor (RF) of the nematode. In the second trial, the bacterium and 5 mg/kg of cupper caused 83.2% and 80.6% reductions in galls and egg masses/gram of root, respectively, and with 100 mg/kg of nitrogen caused 81.7% reduction in RF. In the third trial, the bacterium and 5 mg/kg of cupper caused 74.7% and 81.2% reductions in galls and egg masses/gram of root, respectively, and with 100 mg/kg of nitrogen caused 67.6% reduction in RF. Combination of P. fluorescens CHA0 and copper sulphate was the best treatment in increasing tomato growth parameters and decreasing the nematode indices.

کلیدواژه‌ها [English]

  • copper sulphate
  • Management
  • plant-parasitic nematode
 
Akhtar A., Hisamuddin A., and Sharf R. 2013. Study on black gram (Vigna mungo L.) infected with Meloidogyne incognita under the influence of Pseudomonas fluorescens, Bacillus subtilis and urea. Journal of Plant Pathology & Microbiology 4(9): 200.
Amani Beni F., Karegar A. and Taghavi S. M. 2016. Effect of Pseudomonas fluorescens CHA0 and green manures of some inhibitory plants on activity of the root-knot nematode, Meloidogyne incognita and infected tomato growth parameters. Iranian Journal of Plant Pathology 52: 339-356. (In Persian with English abstract).
Anonymous. 2017. FAOSTAT. Retrieved from http://www.fao.org/faostat/en/#data/QC.
Barker K. R. 1985. Nematode extraction and bioassays, pp: 19-35. In: K. R., Baker, C. C. Carter and J. N. Sasser (eds.). An advanced treatise on Meloidogyne, methodology. Vol. II. North Carolina State University, Raleigh, North Carolina USA.
Behzadi Amin R., Karegar A. and Taghavi S. M. 2014. Evaluation of rhizobacteria effects on the activity of root-knot nematode, Meloidogyne incognita, under greenhouse and laboratory conditions. Iranian Journal of Plant Pathology 50: 25-27 [53-68] (In Persian with English abstract).
Charegani H., Karegar Bideh A. and Hamzehzarghani H. 2010. Effect of chemical fertilizers on root-knot nematode (Meloidogyne incognita) in greenhouse cucumber cultivation. Iranian Journal of Plant Pathology 46: 71-73 [263-274] (In Persian with English abstract).
Duffy B. K. and Defago G. 1999. Environmental factores modulating antibiotic and siderophor biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmental Microbiology 65: 2429-2438.
Graham R.D. and Webb M. J. 1991. Micronutrients and plant disease resistance and tolerance in plants, pp. 329-370. In: J. J. Mortvedt, F. R. Cox, L. M. Shuman and R. M. Welch (eds). Micronutrients in Agriculture, SSSA Book Series 4. Soil Science Society of America, USA.
Haas D. and Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3: 307-319.
Habash S. and Al-Banna L. 2011. Phosphate fertilizers suppressed root knot nematode Meloidogyne javanica and M. incognita. Journal of Nematology 43(2): 95-100.
Hamid M., Siddiqui I. A. and Shahid Shaukat S. 2003. Improvement of Pseudomonas fluorescens CHA0 biocontrol activity against root-knot nematode by the addition of ammonium molybdate. Letters in Applied Microbiology 36: 239-244.
Hemm, M. R., Rider, S. D., Ogas, J., Murry, D. J., and Chapple, C. 2004. Light induces phenylpropanoid metabolism in Arabidopsis roots. The Plant Journal 38: 765-778.
Hussey R. S. and Janssen G. J. W. 2002. Root knot nematode: Meloidogyne species, pp: 43-70. In: J. L. Starr, R. Cook and J. Bridge (eds). Plant resistance to parasitic nematodes. CAB International. UK.
Keel C., Schnider U., Maurhofer M., Voisard C., Laville J., Burger U., Wirthner P., Haas D. and Défago G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: Importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interaction 5: 4-13.
Majzoob S., Karegar A., Taghavi M. and Hamzehzarghani H. 2012. Evaluation of rhizobacteria for antagonistic activity against root-knot nematode, Meloidogyne javanica on cucumber, under greenhouse condition. Iranian Journal of Plant Pathology 46: 27-29 [69-84] (In Persian with English abstract).
Noweer E. M. A. and Hasabo S. A. 2005. Effect of different management practices for controlling root-knot nematode Meloidogyne incognita on squash. Egyptian Journal of Phytopathology 33: 73-81.
Oraghi Ardebili Z., Oraghi Ardebili N. and Mahdi Hamdi S. M. 2011. Physiological effects of Pseudomonas fluorescens CHA0 on tomato (Lycopersicon esculentum Mill.) plants and its possible impact on Fusarium oxysporum f. sp. lycopersici. Australian Journal of Crop Science 5: 1631-1938.
Pakeerathan K., Mikunthan G. and Tharshani N. 2009. Eco-friendly management of root-knot nematode Meloidogyne incognita (Kofid and White) Chitwood, using different green leaf manures on tomato under field conditions. American-Eurasian Journal of Agricultural and Environmental Sciences 6: 494-497.
Rumiani M., Karegar A., Hamzehzarghani H. and Banihashemi Z. 2016. Effect of elemental sulfur on the root-knot nematode, Meloidogyne incognita, activities in cucumber plants. Iranian Journal of Plant Pathology 52: 85-98. (In Persian with English abstract).
Sasser J. N. and Freckman D. W. 1987. A world prospective on nematology: The role of the society, pp. 7-14. In: J. A. Veech and D. W. Dickson(Eds).Vistas on Nematology. Society of Nematologists, Inc. Hyattsville, Maryland, USA.
Schaad N. W. Jones J. B. and Chum W. 2001. Laboratory guide for identfication of plant pathogenic bacteria. APS Press 373 pp.
Seifi S. and Karegar Bide A. 2013. Effect of mineral fertilizers on cereal cyst nematode Heterodera filipjevi population and evaluation of wheat. World Applied Programming 3(4): 137-141.
Shaukat S. S. and Siddiqui I. A. 2003. Zinc improves biocontrol of Meloidogyne javanica by the antagonistic rhizobia. Pakistan Journal of Biological Sciences 6(6): 575-579.
Siddiqui I. A. and Shaukat S. S. 2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biology and Biochemistry 35: 1615-1623.
Siddiqui Z. A., Iqbal A. and Mahmood I. M. 2001. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology 16: 179-185.
Tavakol Norabadi M., Sahebani N. and Etebarian H. R. 2014. Biological control of root-knot nematode (Meloidogyne javanica) disease by Pseudomonas fluorescens (CHA0‏). Archives of Phytopathology and Plant Protection 47: 615-621.
Taylor A. L. and Sasser J. N. 1978. Biology, identification and control of root-knot nematodes (Meloidogyne spp.). North Carlina State University Graphics, 111p.
Zheng Y., Duan Y., Chen S., Sun J. and Chen L. 2010. Responses of soybean cyst nematode Heterodera glycines to macroelement and microelement compounds. Bulgarian Journal of Agricultural Science16: 172-18.