مطالعه نقش پیشبر مصنوعی SP-DDEE القاء‌پذیر توسط بیمارگرهای قارچی جهت بیان ژن مقاومت در گیاه Brassica napus

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 تهران، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، گروه بیوتکنولوژی کشاورزی

2 پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، گروه بیوتکنولوژی کشاورزی

چکیده

بیان ژن‌های مقاومت توسط پیشبرهایی که صرفا در پاسخ به بیمارگرها فعال می‌شوند مزیت بزرگی در تولید گیاهان مقاوم به بیماری محسوب می‌شود. در این بررسی ژن کیتیناز کایمری تحت پیشبر القاءپذیر با بیمارگر SP-DDEE به گیاه کلزا منتقل شد و پتانسیل این گیاهان در مهار رشد بیمارگرهای قارچی در محیط in vivo  مورد ارزیابی قرار گرفت. در این راستا، سه سازه ی pGDEC، pGMPC و pBISM2 به ترتیب حاوی پیشبر SP-DDEE ( شامل دوعنصر D و دو عنصر E17 بالادست پیشبر حداقل)، SP-MP (شامل فقط پیشبر حداقل) و CaMV35S ( شامل پیشبر دائمی) جهت تراریختی گیاهان مورد استفاده قرار گرفت. بررسی‌ها با استفاده از آزمون فعالیت آنزیمی مشخص نمود که پیشبر القائی مورد نظر نسبت به محرک متیل جاسمونات القاءپذیر بوده ولی پاسخ مشخصی به محرک سالیسیلیک اسید نشان نداد. بعلاوه، نتایج مشخص نمود عصاره دیسک‌های برگی گیاهان تراریخت حاوی پیشبر SP-DDEE تیمار شده با متیل جاسمونات به نسبت گیاهان شاهد قادر به مهار رشد بیمارگرهای قارچی Sclerotinia sclerotiorum و Rhizoctonia solani می‌باشند. در مجموع مشخص شد پیشبر SP-DDEE، نه تنها نسبت به محرک متیل جاسمونات به عنوان مولکول پیام رسان در مسیر مقاومت به بیمارگرهای نکروترف القاءپذیر می‌باشد، بلکه میزان بیان ژن کیتیناز کایمری، تحت کنترل این پیشبر نیز جهت افزایش مقاوت نسبت به بیمارگرهای قارچی مناسب به نظر می‌رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of the role of the synthetic fungal pathogen inducible SP-DDEE promoter for expression of resistant gene in Brassica napus

نویسندگان [English]

  • M. Moradyar 1
  • M. Motallebi 2
  • M.R Zamani 1
  • R. Aghazadeh 1
چکیده [English]

The expression of defensive genes from a promoter that is specifically activated in response to pathogen invasion is highly desirable for engineering disease-resistant plants. In this study, chimeric chitinase gene under the control of SP-DDEE pathogen inducible promoter transformed to the canola plants and these plants were evaluated for their in vivo biocontrol potential against fungal pathogens. In this regard, three constructs, pGDEC, pGMPC, pBISM2 containing synthetic promoters, SP-DDEE (two D and two E elements + minimal promoter), SP-MP (minimal promoter), and the CaMV35S constitutive promoter, respectively were used. Enzyme activity assay demonstrated that the synthetic pathogen-inducible promoter was responsive to the Methyl jasmonate (MJ) elicitor, but not responsive to the salicylic acid. Moreover, results indicated that leaf total protein from transgenic lines harboring the SP-DDEE promoter treated with MJ, inhibited the growth of the fungal pathogens of Sclerotinia sclerotiorum and Rhizoctonia solani. Overall, data show that not only the SP-DDEE synthetic promoter is highly responsive to MJ, as an important chemical signal in necrotrophic pathogen defense, but the inducible expression of the chimeric chitinase gene, when controlled by the SP-DDEE promoter, is also seems to be appropriate to increased resistance to fungal pathogens.

کلیدواژه‌ها [English]

  • Canola
  • Chimeric chitinase
  • Rhizoctonia solani
  • Sclerotinia sclerotiorum
  • Synthetic promoter

 

Broekaert, W. F., Delaure, S. L., De Bolle, M. F. C., and Cammue, B. P. A. 2006. The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology. 44:393-416.
Cazzonelli, C. I., and Velten, J. 2008. In vivo characterization of plant promoter element interaction using synthetic promoters. Transgenic Research. 17: 437-457.
Chan, Y. L., He, Y., Hsiao, T. T., Wang, C. J., Tian, Z., and Yeh, K. W. 2015. Pyramiding taro cystatin and fungal chitinase genes driven by a synthetic promoter enhances resistance in tomato to root-knot nematode Meloidogyne incognita. Plant Science.231: 74-81.
Dey, N., Sarkar, S., Acharya, S., and Maiti, I. B. 2015. Synthetic promoters in planta. Planta. 242: 1077-1094.
Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends in plant science  5: 199-206.
Gurr, S. J., and Rushton, P. J. 2005. Engineering plants with increased disease resistance: what are we going to express? Trends in Biotechnology. 23: 275-282.
Hammond-Kosack, K. E., and Parker, J. E. 2003. Deciphering plant pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology. 14: 177-193.
Heise, A., Lippok, B., Kirsch, C., and Hahlbrock, K. 2002. Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box-containing elicitor-response element of AtCMPG1. Proceedings of the National Academy of Sciences.  99: 9049-9054.
Joosten, M., Verbakel, H., Nettekoven, M., Van Leeuwen, J., Van der Vossen, R., and De Wit, P. 1995. The phytopathogenic fungus Cladosporium fulvum is not sensitive to the chitinase and β-1, 3-glucanase defence proteins of its host, tomato. Physiological and Molecular Plant Pathology.  46: 45-59.
Kirsch, C., Logemann, E., Lippok, B., Schmelzer, E., and Hahlbrock, K. 2001. A highly specific pathogen‐responsive promoter element from the immediate‐early activated CMPG1 gene in Petroselinum crispum. The Plant Journal.  26: 217-227.
Kronland, W., and Stanghellini, M. 1988. Clean slide technique for the observation of anastomosis and nuclear condition of Rhizoctonia solani. Phytopathology. 78: 820-822.
Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., and Ward, E. 1998. Functional analysis of regulatory sequences controllingPR‐1 gene expression in Arabidopsis. The Plant Journal. 16: 223-233.
Limon, M. C., Margolles-Clark, E., Benitez, T., and Penttila, M. 2001. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiology Letters. 198: 57-63.
Limon, M. C., and Codon, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology. 7: 249-260.
Lorito, M., Woo, S. L., Fernandez, I. G., Colucci, G., Harman, G. E., Pintor-Toro, J. A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proceedings of the National Academy of Sciences. 95: 7860-7865.
Matroodi, S., Motallebi, M., Zamani, M., and Moradyar, M. 2013. Designing a new chitinase with more chitin binding and antifungal activity. World Journal of Microbiology and Biotechnology. 29: 1517-1523.
Mauch, F., Mauch-Mani, B., & Boller, T. 1988. Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanase. Plant physiology. 88: 936-942.
Mazarei, M., Teplova, I., Hajimorad, M. R., and Stewart, C. N. 2008. Pathogen phytosensing: plants to report plant pathogens. Sensors. 8: 2628-2641.
Moloney, M. M., Walker, J. M., and Sharma, K. K. 1989. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Reports. 8: 238-242.
Neuhaus, J.-M., Ahl-Goy, P., Hinz, U., Flores, S., and Meins Jr, F. 1991. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Molecular Biology. 16: 141-151.
Niemeyer, J., Ruhe, J., Machens, F., Stahl, D. J., and Hehl, R. 2014. Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco. Plant Molecular Biology. 84: 111-123.
Rushton, P. J., Reinstأ¤dler, A., Lipka, V., Lippok, B., and Somssich, I. E. 2002. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. The Plant Cell.  14: 749-762.
Rushton, P. J., and Somssich, I. E. 1998. Transcriptional control of plant genes responsive to pathogens. Current opinion in plant biology. 1: 311-315.
Salinas, J., Oeda, K., and Chua, N.-H. 1992. Two G-box-related sequences confer different expression patterns in transgenic tobacco. The Plant Cell.  4: 1485-1493.
Sambrook, J., and Russell, D. W. 2001. Molecular cloning: a laboratory manual. Volume 1–3. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
sharma, N., sharma, K. P., gaur, R. K., and gupta, V. K. 2011. Role of chitinase in plant defense. Asian journal of biochemistery. 6: 29-37.
Shokouhifar, F., Zamani, M. R., Motallebi, M., Mousavi, A., and Malboobi, M. A. 2011. Construction and functional analysis of pathogen-inducible synthetic promoters in Brassica napus. Biologia Plantarum. 55: 689-695.
Trudel, J., and Asselin, A. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Analytical biochemistry. 178: 362-366.
Venter, M. 2007. Synthetic promoters: genetic control through cis engineering. Trends in Plant Science. 12: 118-124.
Zeilinger, S., Galhaup, C., Payer, K., Woo, S. L., Mach, R. L., Fekete, C., Lorito, M., Kubicek, C.P. 1999. Chitinase Gene Expression during Mycoparasitic Interaction of Trichoderma harzianum with Its Host. Fungal Genetics and Biology. 26: 131-140.
-