بررسی کاربرد تلفیقی جدایه‌هایی از قارچ‌های میکوریز آربوسکولار و باکتری‌های محرک رشد گیاهی در کنترل نماتد ریشه‌گرهی Meloidogyne javanica در گوجه‌فرنگی در شرایط گلخانه

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکترای بیماری شناسی گیاهی دانشکده کشاورزی دانشگاه آزاد اسلامی. واحد علوم و تحقیقات تهران.

2 استادیار پژوهشی، بخش تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی کرمانشاه.

3 دانشیار گروه گیاهپزشکی دانشکده علوم و مهندسی کشاورزی. دانشگاه تهران.

4 استادیار گروه بیماری شناسی گیاهی دانشکده کشاورزی دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

5 استادیار گروه گیاهپزشکی پردیس کشاورزی و منابع طبیعی دانشگاه رازی. کرمانشاه.

چکیده

جهت ارزیابی کاربرد توأم جدایه­هایی از قارچ­های میکوریز آربوسکولار و باکتری­های محرک رشد گیاهی در کنترل نماتد ریشه­گرهی Meloidogyne javanica ، از قارچ­های­ میکوریز آربوسکولار Glomus mosseae و G. versiforme و جدایه­هایی از باکتری­های محرک رشد گیاهی Pseudomonas fluorescens، Pseudomonas striata،Bacillus subtilis  و Paenibacillus polymyxa استفاده گردید. بدین منظور پس از اطمینان از کلنیزاسیون ریشه­ها توسط قارچ­های میکوریز و باکتری­های محرک رشد گیاهی آزمایشی با 15 تیمار و چهار تکرار در شرایط گلخانه انجام شد. نتایج نشان داد که قارچ­های میکوریز آربوسکولار و باکتری­های محرک رشد گیاهی باعث افزایش‌ رشد بخش‌های مختلف گیاه و همچنین کاهش شاخص­های آلودگی نماتد ریشه­گرهی شدند. همچنین کاربرد تلفیقی این عوامل، نسبت به کاربرد جداگانه هریک از آن­ها تأثیر بیشتری در کنترل نماتد داشت. نتایج نشان دهنده توانایی بیشتر باکتری P. polymyxaنسبت به دیگر عوامل مورد بررسی در کنترل نماتد بود. در این حالت این باکتری توانست به میزان 52% سبب کاهش تعداد تخم در توده تخم نسبت به تیمار شاهد نماتد گردد. همچنین کاربرد تلفیقی قارچ میکوریز G. mosseaeو باکتری P. polymyxaبیشترین تأثیر را در کاهش شاخص­های آلودگی به نماتد ریشه­گرهی داشت به طوری که جمعیت لارو سن دوم را در خاک به میزان 59% کاهش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on combined application of arbuscular mycorrhizal fungi isolates and plant growth promoting rhizobacteria in controlling root-knot nematode Meloidogyne javanica in tomato under greenhouse conditions

نویسندگان [English]

  • F. Sohrabi 1
  • M. Sheikholeslami 2
  • R. Heydari 3
  • S. Rezaee 4
  • R. Sharifi 5
چکیده [English]

Efficiency of the application of two species from arbuscular mycorrhizal fungi, Glomus mosseae and G. versiforme, and four plant growth promoting Rhizobacteria Pseudomonas fluorescens, Pseudomonas striata, Bacillus subtilis and Paenibacillus polymyxa on the control of root-knot nematode, Meloidogyne javanica, was studied. Based on our results arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria stimulated the growth of tomato plants and also reduced the severity of the disease caused by M. javanica. Combined application of the tested biocontrol agents was more effective than their single usage. P. polymyxa was more efficient in controlling M. javanica than other implemented biological agents so that this bacterium could decrease egg number in the egg mass of M. javanica as 52% compared with nematode alone control treatment. Likewise, the combined application of G. mosseae and P. polymyxa had the best effect to suppress nematode, so that in this treatment J2 population decreased as 59% compared with nematode alone treatment.

کلیدواژه‌ها [English]

  • Biocontrol
  • integrated management
  • organic agriculture
  • root-knot nematode
Ahmadzadeh M. 2013. Biological control of plant diseases (plant probiotic bacteria). Tehran University Press and Publishing. Tehran. Iran. 490 p. (In Farsi)
 
Alijani Z., Olia M., Sharifnabi B. and Jaimand K. 2015. Effect of different inoculum densities of root-knot nematode, Meloidogyne javanica on progress of disease and production of secondary compounds in pot marigold, Calendula officinalis. Plant pathology 51 (2): 215- 228.
 
Avis T. J., Gravel V., Antoun H. and Tweddell R. J. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry 40(7): 1733-1740.
 
Barea J. M., Azcon R. and Azcon-Anguilar C. 2002. Mycorrhizospher interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81: 342-351.
 
Behzadi Amin R., Kargar Bideh A. and Taghavi S. M. 2014. Evaluation of rhizobacteria effects on the activity of root-knot nematode, Meloidogyne incognita under greenhouse and laboratory conditions. Iranian Journal of Plant Pathology 50(1): 53-68.
 
Berg R. H. and Tylor C. G. 2008. Cell biology of plant nematode parasitism. Heidelberg. Germany. 273 p.
 
Castillo P., Nico A. I., Azcon-Aguilar C., Del Rio Rincon C., Calvet C. and Jimenez-Diaz R. M. 2006. Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Journal of Plant Pathology 55: 705-713.
 
De Grisse A. 1969.Accounting dish for nematodes excluding border effect. Nematologica 9: 162.
 
Faten D., Rupali D. and Wusirika R. 2015. Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiology and Biochemistry 97: 390-399.
 
Fatma T., Mustapha T. and Jean-Jacques D. 2012. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences 19: 157–163.
 
Hussey R. S. and Barker K. R. 1973. Comparison of methods for collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025–1028.
 
Hussey R. S. and Janssen G. S. W. 2002. Root-knot nematodes: Meloidogyne species. In: Starr J. L. Cook R. and Bridge J. Plant resistance to parasitic nematodes. CAB International PP: 69-77.
 
Jaizme-Vega M. C., Tenoury P., Pinochet J. and Jaumot M. 2007. Interactions   between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana. Plant and soil 197: 27-35.
 
Jenkins W. R. 1964. A rapid centrifugal technique for separating nematodes from soil. Plant Disease Reporter 48: 672-693.
 
Kloepper J. W., Leong J., Teintze M. and Schroth M. N. 1980. Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286: 885-886.
 
Linderman R. G. 2000. Effects of mycorrhizas on plant tolerance to disease. Arbuscular Mycorrhizas: Physiology and Function pp 345-367.
 
Lucy M., Reed E. and Glick B. R. 2004. Application of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86: 1-25.
 
Menge J. A., Powell C. L. and Bagyaraj D. P. 1984. Inoculum production. In: C. L. Powell and D. P. Bagyaraj (Eds.). VA Mycorrhiza. CRC Press Inc., Boca Raton, Florida, USA  pp:187-199.
 
Oostenbrink M. 1966. Major characteristics of the relation between nematodes and plants. Mededelingen Landbouwhogeschool Wageningen: 66(4) 1- 46.
 
Oyekanmi E. O., Coyneb D. L., Fagadea O. E. and Osonubia O. 2007. Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Protection  26: 1006–1012.
 
Phillips J. M. and Hayman D. S. 1974. Improved procedures clearing root and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infections. Transaction of British Mycological Society 55: 158-161.
 
Rai M. K. 2001. Current advances in mycorrhization in micropropagation In vitro. Cellular Developmental Biology Plant 37:158-167.
 
Rezaee Danesh Y., Mohammadi Goltapeh A., Alizadeh A. and Varma A. 2007. Studies on taxonomy and in vitro culturing possibility soybean and alfalfa-associated arbuscular mycorrhizas in Iran. Ph.D thesis. Plant protection Department, Faculty of agriculture.Tarbiat Modarres university 346 p.
 
Richard A. and  Emilio C. 2005. Plant parasitic nematodes in subtropical and tropical agriculture. CABI 319 p.
 
Roberts D. P., Lohrke S. M., Meyer S. L. F., Buyer J. S., Bowerrs J. H., Baker C. J., Li W., Souza J. T., Lewis J. A. and Chung S. 2005. Biocontrol agents applied individually and in combination for suppression of soil borne diseases of cucumber. Crop Protection 24(2): 141-155.
 
Roserwarne G. M., Barker S. J. and Smith S. E. 1997. Production of near-synchronous fungal colonization in tomato for developmental and molecular analyses of mycorrhiza. Mycological Research 101: 966–970.
 
Rumbos C., Reimann S., Kiewnick S. and Richard A. 2009. Interactions of Paecilomyces lilacinus strain 251 with the mycorrhizal fungus Glomus intraradices: Implications for Meloidogyne incognita control on tomato. Biocontrol Science and Technology 16 (9): 981-986.
 
Runjin L., Mei D., Xia W., Min L.  and  Xingzhong L. 2012. Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid& White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza 22:289–296.
 
Serfoji P., Rajeshkumar S. and Selvaraj T. 2010. Management of root-knot nematode, Meloidogyne incognita on tomato cv Pusa Ruby by using vermicompost, AM fungus, Glomus aggregatum and mycorrhiza helper bacterium, Bacillus coagulans. International Journal of Agricultural Technology 6(1): 37-45.
 
Sharon E., Bar-Eyal M., Chet I., Herrera-Esterella A., Keleifeld O. and Spiegel Y. 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Plant parasitic in subtropical and tropical agriculture. CABI 91(7): 687-693.
 
Shreenivasa K. R., Krishnappa K., Ravichandra N. G. 2006. Interaction Effects of Arbuscular Mycorrhizal Fungus Glomus fasciculatum and Root-Knot Nematode, Meloidogyne incognita on Growth and Phosphorous Uptake of Tomato. Karnataka Journal of Agricultural Sciences 20: 57 - 61.
 
Siddiqui I. A., Shaukat S. S., Sheikh I. H. and Khan A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology 22: 641-650.
 
Siddiqui Z. A. and Sayeed Akhtar M. 2009. Effects of antagonistic fungi, plant growth-promoting rhizobacteria, and arbuscular mycorrhizal fungi alone and in combination on the reproduction of Meloidogyne incognita and growth of tomato. Journal of General Plant Pathology 75:144–153.
 
Sohrabi F., Fadaei-Tehrani A. A. and Rezaee Danesh Y. 2012. Study on the chitinase changes in interaction of arbuscular mycorrhizal fungus (Glomus mosseae) and  root-knot nematode (Meloidogyne javanica) on tomato. Journal of Plant Protection (29) 3: 349 -356.
 
Somers E., Vanderleyden J. and Srinivasan M. 2004. Rhizosphere bacterial signaling: a love parade beneath our feet. Critical Reviews in Microbiology 304: 205-240.
 
Suslow T. V. and Schroth M. N. 1982. Rhizobacteria on sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199-206.
Taylor D. P. and Netscher C. 1974. An improved technique for preparing perineal patterns of Meloidogyne spp. Nematologica 20: 268-269.
 
Tian B., Yang J. and Zhang K. Q. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. Federation of European Microbiological Societies Microbiology Ecology 61:197–213.
  
Varma A. 2008. Mycorrhiza. Springer Verlag Pub. USA 798 p.
 
Waceke J. V., Waudo S. V. and Sikora R. 2001. Suppression of Meloidogyne hapla by arbuscular mycorrhizal fungi on pyrethrum in Kenya. Pest Management Science 47:135-14.
 
Zhou L., Yuen G., Wang Y., Wei L. and Ji G. 2016. Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protection 84 : 8-13.