القای مقاومت در گیاه گوجه‌فرنگی با استفاده از بتا-آمینوبوتریک اسید علیه جدایه Ta18 باکتری Clavibacter michiganensis subsp. michiganensis جداشده از ایران

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

-

چکیده

بیماری شانکر باکتریایی ایجاد شده بوسیلهClavibacter michiganensis subsp michiganensis  یکی از بیماری‌های اقتصادی مهم گوجه‌فرنگی است. در این مطالعه، پس از جدا سازی و تشخیص بیمارگر، اثرات پیش‏تیمار بتا-آمینوبوتریک اسید (BABA) علیه بیماری شانکر باکتریایی در شرایط آزمایشگاهی مورد بررسی قرار گرفت.  BABAبه عنوان یکی از مواد شیمیایی توانمند القا کننده مقاومت در گیاهان بر علیه عوامل بیماریزا شناخته می‌شود. در این مطالعه گیاهان گوجه‌فرنگی با غلظت 2/0 میلی‏مولار BABA و آب مقطر سترون به عنوان شاهد تیمار شدند، سپس با جمعیت 108×1 سلول باکتری در هر میلی لیتر مایه‌زنی شدند. نتایج آزمایشات در فواصل زمانی مختلف نشان داد که پیش‏تیمار BABA، جمعیت باکتری و شدت بروز علائم در گیاهان مایه‏زنی شده را بطور معنی داری در مقایسه با شاهد کاهش داد، افزون بر این ظهور دیرتر علائم بیماری بیانگر دوره کمون طولانی‌تر در گیاهان تیمار شده توسط BABA است. همچنین افزایش قابل توجه بیان ژن‏های PR1 و کاتالاز در گیاهان تیمار شده مشاهده شد. بر اساس نتایج ما و با توجه به عدم وجود راه‏حل مدیریتی مناسب علیه این بیماری، توصیه‏ی به‏کارگیری BABA به عنوان یک عامل سازگار با محیط زیست، سهم ارزشمندی در مدیریت این بیماری خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Induction of resistance in tomato by β-aminobutyric acid against Clavibacter michiganensis subsp. michiganensis Ta18 strain isolated from Iran

نویسندگان [English]

  • M. Ansari
  • S.M. Taghavi
  • H. Hamzehzarghani
  • A. Afsharifar
-
چکیده [English]

Bacterial canker caused by Clavibacter michiganensis subsp. michiganensis is an economically important disease of tomato. In this study after isolation and characterization of the pathogen, effects of tomato pre-treatment with DL-β-aminobutyric acid (BABA) on bacterial canker was investigated under laboratory conditions. BABA is known as a powerful chemical resistance inducer in plants against diverse pathogens. In this study, tomato plants were treated with a 0.2 mM concentration of BABA and distilled water served as control. The plants were subsequently challenged with a 1×108 CFU ml−1 bacterial suspension. The results of experiments in different time intervals showed that BABA pre-treatment resulted in a significant reduction of bacterial population and symptoms severity of inoculated plants as compared to their controls. Furthermore, late appearance of disease symptoms indicated longer incubation periods for BABA treated plants. Also, a significant increase was observed in the expression of PR1 and catalase genes in treated plants. Based on our results and regarding the lack of proper management options against the disease, application of BABA as an environmentally safe agent is recommended as a valuable contribution to disease management.

Aime,´ S., Alabouvette, C., Steinberg, C., and Olivain, C. 2013. The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol. Plant. Microbe. Interact. 26:918–926.
Ansari, M., Taghavi, S. M., Zarei, S., Miri, K., Portier, P. and Osdaghi, E. 2019. Pathogenicity and molecular phylogenetic analysis reveal a distinct position of the banana fingertip rot pathogen among the Burkholderia cenocepacia genomovars. Plant Pathol. 68:804-815.
Baccelli, I. and Mauch-Mani, B. 2016. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Mol. Biol. 91:703–711.
Baysal, O., Gursoy, Y. Z., Ornek, H., Cetinel, B. and Da Silva, J. 2007. Enhanced systemic resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato by DL-b-aminobutyric acid under salt stress. Physiol. Plant. 129:493–506.
Baysal, O., Gursoy, Y., Ornek, H., and Duru, A. 2005. Induction of oxidants in tomato leaves treated with DL-beta-amino butyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. Eur. J. Plant. Pathol. 112:361-369.
Baysal, O., Soylu, M. E. and Soylu, S. 2003. Induction of defense related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis spp. michiganensis. Plant Pathol. 52:747–753.
Buonaurio, R., Iriti, M. and Romanazzi, G. 2009. Induced resistance to plant diseases caused by Oomycetes and Fungi. Petria. 19:130-148.
Burokiene, D., Sobiczewski, P. and Berczynski, S. 2005. Phenotypic characterization of Clavibacter michiganensis subsp. michiganensis isolates from Lithuania. Phytopathologia. 38:63–77.
Charehgani, H., Karegar, A. and Djavaheri, M. 2014. Comparison of Dl- Β-amino-N-butyric acid, salicylic acid and abscisic acid in induction of resistance in tomato infected by Meloidogyne Incognita. Iran. J. Plant Path. 504:161-163.
Chavan, V. and Kamble, A. 2014. Induction of total phenolics and defence-related enzymes during β-aminobutyric acid-induced resistance in Brassica carinata against Alternaria blight. Arch. Phytopathol. Plant. Prot. 47:2200–2212.
Cohen, Y., Rubin, A. E. and Kilfin, G. 2010. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-b-aminobutyric acid (BABA). Eur. J. Plant Pathol. 126:553–573.
Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97–119
Conrath, U., Beckers, G. J. and Flors, V. 2006: Priming: getting ready for battle. Mol. Plant. Microbe. Interact. 19:1062-1071.
Conrath, U., Pieterse, C. M. and Mauch-Mani, B. 2002: Priming in plant-pathogen interactions. Trends. Plant. Sci. 7:210-216.
De León, L., Siverio, F., López, M., and Rodríguez, A. 2011. Clavibacter michiganensis subsp. michiganensis, a seed borne tomato pathogen: healthy seeds are still the goal. Plant Dis. 95:1328–1338.
Eichenlaub, R. and Gartemann K. H. 2011. The Clavibacter michiganensis subspecies: molecular investigation of Gram-positive bacterial plant pathogens. Annu. Rev. Phytopathol. 49:445–464.
EFSA PLH Panel (EFSA Panel on Plant Health). 2014. Scientific Opinion on the pest categorisation of Clavibacter michiganensis subsp. michiganensis (Smith). EFSA J. 47-77.
EPPO. 2016. PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis. EPPO Bulletin 46:202–225.
Fatmi, M., and Schaad, N. W. 2002. Survival of Clavibacter michiganensis ssp. michiganensis in infected tomato stems under natural field conditions in California, Ohio and Morocco. Plant Pathol. 51:149–154.
Flors, V., Ton, J., Van Doorn, R., Jakab, G., García-Agustín, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant .J.54:81–92.
Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–227.
Gleason, M., Gitaitis, R. and Ricker, M. 1993. Recent progress in understanding and controlling bacterial canker of tomato in eastern North America. Plant Dis. 77:1069–1076.
Hassan, M. A. E. and Abo-Elyousr, K. A. M. 2013. Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). Eur. J. Plant. Pathol. 136:145–157.
Hossain, Z., Makino T. and Komatsu, S. 2012. Proteomic study of β- aminobutyric acid-mediated cadmium stress alleviation in soybean. J. Proteome. 75:4151–4164.
Jakab, G., Ton, J., Flors, V., Zimmerli, L., Métraux, J. P. and Mauch-Mani, B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol.139:264–174.
Justyna, P. G. and Ewa, K. 2013. Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiol Plant. 35:1735–1748.
Kamble, A. and Bhargava, S. 2007. β-aminobutyric acid-induced resistance in Brassica juncea against the necrotrophic pathogen Alternaria brassicae. J. Phytopathol. 155:152–158.
Kuc, J. 2001. Concepts and direction of induced systemic resistance in plants and its application. Eur. J. Plant Pathol. 107:7-12.
Lawton, K. A.; Friedrich, L.; Hunt, M.; Weymann, K.; Delaney,T.; Kessmann, H.; Staub, T. and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82.
Lee, I. M., Bartoszyk, I. M., Gundersen, D. E., Mogen, B. and Davis, R. E. 1997. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus. Appl. Environ. Microbiol. 63:2625–2630.
Lee, H. A., Lee, H.Y., Seo, E., Lee, J., Kim, S. B., Oh, S., Choi, E., Choi, E., Lee, S. E. and Choi, D. 2017. Current Understandings of Plant Non-host Resistance. Mol. Plant. Microbe. Interact. 30:5–15.
Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408.
Luna, E., Beardon, E., Ravnskov, S., Scholes, J. and Ton, J. 2016. Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Dis. 100:704–710.
Luna, E., Van Hulten, M., Zhang, Y. H., Berkowitz, O., Lopez, A., Petriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van de Meene, A., Pieterse, C. M., Flors, V. and Ton, J. 2014. Plant perception of β- aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat. Chem. Biol. 10:450–456.
Maloy, S. 1990. Jones and Bartlet Publishers, pp. 180. Experimental Techniques in Bacterial Genetics. Boston, MA, USA.
Mauch-Mani, B. and Mauch, F. 2005. The role of abscisic acid in plant-pathogen interactions. Curr. Opin. Plant. Biol. 8:409-14.
Mazarei, M., Orumchi, S. and Lora, C. 1993. Investigation of bacterial canker of tomato in West Azarbaijan, Iran. Proceedings of the 11th Plant Protection Congress of Iran. pp 160.
Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends. Plant .Sci. 9:490–498.
Molinari, S., Fanelli, E. and Leonetti, P. 2014. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Mol. Plant. Pathol. 15:255–264
Nazari, F., Niknam, G. R., Ghasemi, A., Taghavi, S. M., Momeni, H. and Torabi, S. 2007. An investigation on strains of Clavibacter michiganensis subsp. michiganensis in North and NorthWest of Iran. J. Phytopathol. 155:563-569.
O’brien, J. A., Daudi, A., Finch, P., Butt, V. S.,Whitelegge, J. P., Souda, P., Ausubel, F. M. and Bolwell, G. P. 2012. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol. 158:2013–2027.
Osdaghi, E., Ansari, M., Taghavi, S. M., Zarei, S., Koebnik, R. and Lamichhane J. R. 2018. Pathogenicity and phylogenetic analysis of Clavibacter michiganensis strains associated with tomato plants in Iran. Plant pathol. 674:957-970.
Pastrik, K. H. and Rainey, F. A. 1999. Identification and differentiation of Clavibacter michiganensis subspecies by polymerase chain reactionbased techniques. J. Phytopathol. 147:687–693.
Pieterse, C. M. J. and Van Loon, L. C. 1999.Salicylic acid-independent plant defence pat hways. Plant Sci. 4:52-58.
Richert, K., Brambilla, E. and Stackebrandt, E. 2005. Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales. J. Microbiol Methods. 60:115–123.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell.8:1809–1819.
Safaie Farahani, A. and Taghavi, S. M. 2017. Induction of resistance in pepper against Xanthomonas euvesicatoria by β-aminobutyric acid. Australas. Plant Dis. Notes. 12:1.
Safaie Farahani, A., Taghavi, S. M., Afsharifar, A. and Niazi, A. 2016 Effect of β- aminobutyric acid on resistance of tomato against Pectobacterium carotovorum subsp. carotovorum. J Plant Dis Prot. 123:155–161
Sahebani, N. and Hadavi, N. 2009. Induction of H2O2 and related enzymes in tomato roots infected with root knot nematode (M. javanica) by several chemical and microbial elicitors. Biocontrol Sci Techn. 19:301–313.
Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. 3rd edn. St Paul, MN, USA: APS.
Sen, Y., Van Der Wolf, J., Visser, R. G. F. and Van Heusden, A. W. 2015. Bacterial canker of tomato: current knowledge of detection, management, resistance and interactions. Plant Dis. 99:4–13.
Sharifi-Sirchi, G. R., Beheshti, B., Hosseinipour, A., and Mansouri, M. 2011. Priming against Asiatic citrus canker and monitoring of PR genes expression during resistance induction. Afr. J. Biotechnol. 10:3818–3823.
Shternshis, M. V., Beljaev, A. A., Shpatova, T.V., Bokova, J. V. and Duzhak, A. B. 2002: Field testing of bacticide, phytoverm and chitinase for control of the raspberry midge blight in Siberia. Biocontrol. 47:697-706.
Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B. and Mauch-Mani, B. 2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol.158:835–843.
Slaughter, A. R., Hamiduzzaman, M. M. D., Gindro, K., Neuhaus, J. M. and Mauch-Mani, B. 2008. Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: Involvement of pterostilbene. Eur. J. Plant Pathol. 122:185-195.
Smith, E. F. 1910. A new tomato disease of economic importance (Abstr.). Science (New  series) 31:794–796.
Ton, J., Flors, V. and Mauch-Mani, B. 2009. the multifaceted role of ABA in disease resistance. Plant Sci. 14:310-317.
Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Me´ Traux, J. P. and Mauch-Mani, B. 2005. Dissecting the beta-amino-butyric acid induced priming pathways in Arabidopsis. Plant Cell. 17:987-999.
Toussaint, V., Benoit, D. L. and Carisse, O. 2012. Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Prot 41:64-70.
Tuzun, S., Rao, M. N., Vogeli, U., Schardi, C. L. and Kuc, J. 1989. Induced systemic resistance to blue mold: early induction and accumulation of ß-1,3-glucanases, chitinases, and other pathogenesis-related proteins (b-proteins) in immunized tobacco. Phytopathol. 79:979-983.
Van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis-related proteins.Eur. J. Plant Pathol. 103:753-765.
Walteres, D. R. and Fountaine, J. M. 2009. Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J. Agr. Sci. 147:523-535.
Wang, K., Jin, P., Cao, S., Shang, H., Yang, Z. and Zheng. Y. 2009. Methyl Jasmonate Reduces Decay and Enhances Antioxidant Capacity in Chinese Bayberries. J. Agric. Food Chem. 57:5809–5815.
Yim, K. O., Lee, H. I., Kim, J. H., Lee, S. D., Cho, J. H. and Cha, J. S. 2012. Characterization of phenotypic variants of Clavibacter michiganensis subsp. michiganensis isolated from Capsicum annuum. Eur. J. plant pathol.13:559-575.
Zhang, Z. P., Miao, M. M. and Wang, C. L. 2015. Effects of ALA on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline accumulation in tomato seedlings under NaCl stress. J. Plant. Growth. Regul. 34: 637–650
Zimmerli, L., Hou, B. H., Tsai, C. H., Jakab, G., Mauch-Mani, B. and Somerville, S. 2008. The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J. 53:144-156.
Zimmerli, L., Métraux, J. P. and Mauch-Mani, B. 2001. β-aminobutyric acid induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517–523.
Zimmerli, L., Jakab, G., Metraux, J. P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc. Natl. Acad. Sci. U. S. A.97:12920-12925.