میزبان‌های طبیعی و انتقال ویروس همراه با کوتولگی زرد تلخه‌بیان

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استاد بخش گیاهپزشکی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کد پستی 7616914111 و عضو پژوهشکده فناوری تولیدات گیاهی، دانشگاه شهید باهنر کرمان

2 دانشجوی دکتری بیماری شناسی گیاهی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

3 کارشناسی ارشد بیماری شناسی گیاهی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

ویروس همراه با کوتولگی زرد تلخه­بیان (Sophora yellow stunt-associated virus, SYSaV) از جنس Nanovirus و خانواده Nanoviridaeیک ویروس جدید از این جنس است که اخیراً از ایران گزارش شده است و دارای گسترش وسیعی در مناطق مختلف این کشور است. در این تحقیق، به منظور شناسایی سایر میزبان­های طبیعی این ویروس، آلودگی نخود ایرانی (Cicer arietinum L.)، عدس (Lens culinaris Medikus)، شیرین­بیان (Glycyrrhiza glabra L.)، اسفند (Peganum harmala L.) و گَوَن (Astragalus sp.) با علائم مشخص نانوویروس­ها مانند کوتولگی و زردی از چند منطقه ایران مورد بررسی قرار گرفت. نتایج بدست آمده از آزمون واکنش زنحیره ای پلیمراز و تعیین ترادف کامل تعدادی از قطعات ژنوم نشان داد که این گیاهان به SYSaV آلوده هستند. آزمایش­های مربوط به انتقال ویروس نشان داد که شته Aphis craccivora در شرایط گلخانه قادر به انتقال ویروس از بوته­های آلوده تلخه­بیان به بوته­های سالم این گیاه است. همچنین، شته Acyrthosiphon pisum که از بوته­های آلوده تلخه­بیان در طبیعت جمع­آوری شده بود به طور مستقیم ویروس را به گیاهچه­های نخود ایرانی و لوبیا چشم بلبلی انتقال داد. بر اساس نتایج بدست آمده از این تحقیق، علاوه بر تلخه­بیان، ویروس فوق دارای میزبان­های دیگری در میان گیاهان دارویی است. همچنین، آلودگی ناشی از SYSaV محدود به گیاهان وحشی نیست و حداقل دو گونه از انواع بقولات نیز توسط آن آلوده می­گردند.

کلیدواژه‌ها


عنوان مقاله [English]

Natural hosts and transmission of Sophora yellow stunt-associated virus

نویسندگان [English]

  • J. Heydarnejad 1
  • P. Hassan-Sheikhi 2
  • S. Bagheri 3
  • J. Sadeghi-Majd 3
  • A. Avish-Koohshahi 3
  • N. Pouramini 2
  • H. Massumi 1
چکیده [English]

Sophora yellow stunt-associated virus (SYSaV) (Nanovirus, Nanoviridae) is a new nanovirus that recently identified in Iran with wide distribution. In the present study, the SYSaV infection of chickpea (Cicer arietinum L.), lentil (Lens culinaris Medikus), liquorice (Glycyrrhiza glabra L.), esfand (Peganum harmala L.) and milk vetch (Astragalus sp.) showing typical nanovirus symptoms including dwarfing and yellowing was tested by PCR and full-length sequencing of selected genome components. Results indicated that these samples are infected with SYSaV. In transmission experiments, the capability of cowpea aphid (Aphis craccivora) and pea aphid (Acyrthosiphon pisum) to transmit SYSaV to healthy plants was evaluated under greenhouse conditions. While Aphis craccivora transmitted the virus from infected to healthy sophora plants, Acyrthosiphon pisum collected on naturally infected sophora plants transmitted the virus to sophora, chickpea and cowpea seedlings. Based on the results of this study, beside the main host (sophora), SYSaV is able to infect two other medicinal plants. In addition, the host range of the virus is not limited to the wild species and at least two legume crops are infected with SYSaV.

کلیدواژه‌ها [English]

  • Sophora yellow stunt-associated virus
  • Nanovirus
  • Aphis craccivora
  • Acyrthosiphon pisum
Abraham A.D., Varrelmann M. and Vetten H.J. 2012. Three distinct nanoviruses, one of which represents a new species, infect faba bean in Ethiopia. Plant Disease 96:1045–1053.
Abraham A.D., Bencharki B., Torok V., Katul L., Varrelmann M. and Vetten H.J. 2010. Two distinct nanovirus species infecting faba bean in Morocco. Archives of Virology 155:37-46. https://doi.10.1007/s00705-009-0548-9
Alavinejad E., Behjatnia S.A.A., Izadpanah K. and Masoumi M. 2011. Molecular detection of Faba bean necrotic yellows virus in legume fields of some North, North West and South provinces of Iran. Proceeding of the 7th National Biotechnology Congress. Iran, Tehran. p 6.
Aronson M.N., Meyer A.D., Gyorgyey J., Katul L., Vetten H.J., Gronenborn B. and Timchenko T. 2000. Clink, a nanovirus-encoded protein, binds both pRB and SKP1. Jornal of Virology 74:2967-2972.
Babin M., Ortiz V., Castro S. and Romero J. 2000. First detection of faba bean necrotic yellows virus in Spain. Plant Disease 84:707.
Bisby, F.A., Buckingham, J. and Harborne, J.B. 1994. Phytochemical dictionary of the Leguminosae. Vol. 1: Plants and their constituents. Chapman and Hall, London.
Briddon R.W., Martin D.P., Roumagnac P., Navas-Castillo J., Fiallo-Olive E., Moriones E., Lett J.-M., Zerbini F.M. and Varsani A. 2018. Alphasatellitidae: A new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Archives of Virology. doi:10.1007/s00705-018-3854-2.
Chu P.W.G., Keese P., Qiu B.S., Waterhouse P.M. and Gerlach W.L. 1993. Putative full-length clones of the genomic DNA segments of subterranean clover stunt virus and identification of the segment coding for the viral coat protein. Virus Research 27:161–171.
Chu P.W.G. and Helms K. 1988. Novel virus-like particles containing circular single-stranded DNA associated with subterranean clover stunt disease. Virology 167:38–49.
Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.
Franz A., Makkouk K.M. and Vetten H.J. 1998. Acquisition, retention and transmission of faba bean necrotic yellows virus by two of its aphid vectors, Aphis craccivora (Koch) and Acyrthosiphon pisum (Harris). Journal of Phytopathology 146:347-355.
Franz A., Makkouk K.M. and Vetten H.J. 1997. Host range of faba bean necrotic yellows virus and potential yield loss in infected faba bean. Phytopathologia Mediterranea 36: 94–103.
Gallet R., Kraberger S., Filloux D., Galzi S., Fontes H., Martin D.P., Varsani A. and Roumagnac P. 2018. Nanovirus-alphasatellite complex identified in Vicia cracca in the Rhone delta region of France. Archives of Virology 163(3):695-700. https://doi.10.1007/s00705-017-3634-4.
Grigoras I., Ginzo A.I., Martin D.P., Varsani A., Romero J., Mammadov A., Huseynova I.M., Aliyev J.A., Kheyr-Pour A., Huss H., Ziebell H., Timchenko T., Vetten H.J. and Gronenborn B. 2014. Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. Jornal of General Virology 95:1178-1191.
Grigoras I., Gronenborn B., and Vetten H.J. 2010. First report of a nanovirus disease of pea in Germany. Plant Disease 94:642-642.
Gronenborn B., Grigoras I., and Vetten H.J. 2011. Nanovirus, pp 959-968. Nanoviridae. In: C. Tidona and G. Darai (Eds). The Springer Index of Viruses. Springer Science+Business Media, New York. https://doi.10.1007/978-0-387-95919-1.
Heydarnejad J., Kamali M., Massumi M., Kvarnheden A., Male M.M., Stainton D., Kraberger S. Martin D.P. and Varsani A. 2017. Identification of a nanovirus-alphasatellite complex in Sophora alopecuroide. Virus Research 235:24-32.
Kumari S.G., Attar N., Mustafayev E. and Akparov Z. 2009. First report of faba bean necrotic yellows virus affecting legume crops in Azerbaijan. Plant Disease 93:1220.
Lotfipour M., Izadpanah K. and Behjatnia S.A.A. 2016. Identification and molecular characterization of Faba bean necrotic stunt virus, a new nanovirus in legume fields in Iran. Iranian Journal of Plant Pathology 54:503-517.
Muhire B.M., Varsani A. and Martin D.P. 2014. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9 (9): e108277.
Sano Y., Wada M., Hashimoto Y., Matsumoto T. and Kojima M. 1998. Sequences of ten circular ssDNA components associated with the milk vetch dwarf virus genome. Journal of General Virology 79:3111–3118.
Shepherd D.N., Martin D.P., Lefeuvre P., Monjane A. L., Owor B.E., Rybicki E.P. and Varsani A. 2008. A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. Journal of Virological Methods 149:97-102.
Song J.Z., Xu H.X., Tian S.J. and But P.P., 1999. Determination of quinolizidine alkaloidsin traditional Chinese herbal drugs by nonaqueous capillary electrophoresis. Journal of Chromatography A 857:303–311.
Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.
Timchenko T., de Kouchkovsky F., Katul L., David C., Vetten H.J. and Gronenborn B. 1999. A single Rep protein initiates replication of multiple genome components of faba bean necrotic yellows virus, a single-stranded DNA virus of plants. Jornal of Virology 73:10173-10182.
Timchenko T., Katul L., Sano Y., de Kouchkovsky F., Vetten H.J. and Gronenborn B. 2000. The master Rep concept in nanovirus replication: Identification of missing genome components and potential for natural genetic reassortment. Virology 274:189-195.
Vetten H.J., Dale J.L., Grigoras I., Gronenborn B., Harding R., Randles J.W., Sano Y., Thomas J.E., Timchenko T. and Yeh H.H. 2012. Nanoviridae, pp 395-404. In: A.M.Q. King, M.J. Adams, E.B. Carstens, E.J. Lefkowitz, (Eds).Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses/Elsevier, Academic Press, London.
Wanitchakorn R., Hafner G.J., Harding R.M. and Dale J.L. 2000. Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. Journal of General Virology 81:299-306.
Zhang Y.P., Uyemoto J.K. and Kirkpatrick B.C. 1998. A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. Journal of Virological Methods 71:45-50.
Zhao L.F., Xu Y.J., Ma Z.Q. and Deng Z.S. 2013. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Brazilian Journal of Microbiology 44: 623–631.