اثر بیمارگر قارچی Leptosphaeria maculans در مرحله زیواپرور بر پروفیل متابولیکی گیاه کلزا رقم هایولا 401 در یک برهم کنش سازگار

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

-

چکیده

پیشرفت­های اخیر در زمینه ابزارها و استخراج داده­ها، امکان مطالعه تاثیر تنش­های مختلف را بر متابولیسم اولیه و ثانویه گیاه به­وجود آورده است. مطالعه مکانیسم­های بیماریزایی و شناسائی مسیرهای متابولیکی مرتبط با بیماریزائی در گیاه، تغییرات در پروفیل متابولیکی بخش قطبی حاصل از برهمکنش سازگار قارچ Leptosphaeria maculans (فرم غیرجنسی Phoma lingam) (جدایه گرگان) و کلزا رقم حساس هایولا 401 به کمک دستگاه کروماتوگرافی گازی-طیف­سنج جرمی (GC-MS) مورد بررسی قرار گرفت. بدین منظور در شرایط کاملاً کنترل شده، 14 روز پس از کشت، در مرحله دو لپه­ای، گیاهان به ترتیب با سوسپانسیون 107 اسپور در میلی­لیتر و آب (شاهد) به روش قطره-زخم مایه­زنی شدند. 48 ساعت پس از مایه­زنی نمونه­برداری بافت محل مایه­زنی انجام شد و به سرعت تحت شوک سرمایی قرار گرفت. متابولیت‌ها با حلال متانول استخراج و به کمک دستگاه GC-MS شناسایی و اندازه‌گیری شده و مورد تجزیه و تحلیل آماری قرار گرفتند. تعداد 70 متابولیت نسبت به شاهد خود تغییرات معنی‌داری (P ≤0.05) نشان دادند که منجر به تغییرات در 28 مسیر متابولیکی در سلول‌های گیاه بود. در این برهمکنش تعدادی مسیر از مسیرهای متابولیکی دخیل در تقویت دیواره­ی سلولی، تولید ترکیبات فنولی، آلکالوئیدی، ترپنوئیدی، تولید انرژی، تولید هورمون و انتقال سیگنال­ تضعیف گردید. همچنین فراوانی تعداد زیادی از قندها کاهش یافت که این موضوع نقش حیاتی این کربوهیدرات­ها را در بیماریزایی P. lingamدر برهم کنش سازگار با یک رقم حساس پیشنهاد می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of fungul pathogen Leptosphaeria maculans at biotrophic stage on canola metabolic profile cultivar Hyola 401 in a compatible interaction

نویسندگان [English]

  • Z. Amjadi
  • H. Hamzehzarghani
-
چکیده [English]

Recent improvements in instrumentation and data mining have made it possible to investigate the effects of various stressors on primary and secondary metabolisms. In this study, in order to study mechanisms of pathogenesis and identify the pathogenesis-related metabolic pathways, changes in metabolic profiles resulting from a compatible interaction between canola cultivar (Hyola 401) and Leptosphaeria maculans (anamorph Phoma lingam) (Phkv102 isolate) were investigated by GC-MS chromatography using the polar fraction of plant extract. Under completely controlled conditions, 14 days after planting, when cotyledons were completely unfolded, the plants were inoculated by 107 spores per ml suspensions and water (control) by drop-wound method, respectively. The tissue samples were taken 48 hours after inoculation and were shock frozen immediately. Metabolites were extracted using methanol as solvent, identified and quantified with GC-MS and subjected to statistical analyses. Results indicated that 70 metabolites showed significant difference over their controls at P≤0.05, which is caused by changes in 28 metabolic pathways. Infection of canola cultivar Hyola 401 to P. lingam resulted in change in pathways related to the host cell wall, phenolic compounds, alkaloids and terpenoids biosyntesis, energy generator, hormone biosynthesis, signal transduction.The abundance of a number of sugars was also decreased, suggesting the crucial role of these carbohydrates in pathogenesis in an incompatible interaction of  P. lingam and a susceptible cultivar.

کلیدواژه‌ها [English]

  • Pathogenesis mechanisms
  • Susceptible cultivar
  • Metabolic pathways

Abdel-Farid I. B., Jahangir M., van den Hondel C. A. M. J. J., Kim H. K., Choi Y. H. and Verpoorte R. 2009. Fungal infection-induced metabolites in Brassica rapa. Plant Science 176(5): 608-615.

Afshari Azad H., Momeni H. and Esmaeli M. 2007. Detection of pathogenicity groups of Phoma lingam causal agent of rapseed blackleg in infected provinces.
Aftab A., Shoaib A., Akhtar N. and Farooq N. 2015. Assessment of physiological changes in Alternaria destruens infected canola plants. Pakistan Journal of Phytopathology 27(1): 89-93.
Arner R. J., Prabhu K. S., Thompson J. T., Hildenbrandt G. R., Liken A. D. and Reddy C. C. 2001. myo-Inositol oxygenase: molecular cloning and expression of a unique enzyme that oxidizes myo-inositol and D-chiro-inositol. Biochemical Journal 360(2): 313-320.
Bagherian S. A. A., Hamzehzarghani H., Izadpanah K. and Djavaheri M. 2016. Effects of potato spindle tuber viroid infection on tomato metabolicprofile. Journal of Plant Physiology 201: 42–53.
Balmer A., Pastor V., Glauser G., and Mauch-Mani B. 2018. Tricarboxylates induce defense priming against bacteria in Arabidopsis thaliana. Frontiers in plant science 9.
Beckles D. M., Roessner, U. 2012. Plant metabolomics: Applications and opportunities for agricultural biotechnology. Inc: 67-81.
Becker M. G., Zhang X., Walker P. L., Wan J. C., Millar J. L., Khan D. and Belmonte M. F. 2017. Transcriptome analysis of the Brassica napusLeptosphaeria maculans pathosystem identifies receptor, signalling and structural genes underlying plant resistance. The Plant Journal 90(3): 573-586.
Benkeblia N., Shinano T. and Osaki M. 2007. Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC-MS analysis. Metabolomics 3: 297–305.
Boerema G. H. de gruyter J, Noordeloos M. E. and Hamers M. E. C. Phoma Identification Manual: Differentiation of Specific and Infraspecifik Taxa in Culture.
Boehmke G. 1989. U.S. Patent No. 4,839,461. Washington, DC: U.S. Patent and Trademark Office.
Bolton M. D. 2009. Primary metabolism and plant defense-fuel for the fire. Molecular Plant-Microbe Interactions 22(5): 487-497.
Botanga C. J., Bethke G., Chen Z., Gallie D. R., Fiehn O. and Glazebrook J. 2012. Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Molecular Plant-Microbe Interactions 25(12): 1628-1638.
Brock M. and Buckel W. 2004. On the mechanism of action of the antifungal agent propionate: Propionyl‐CoA inhibits glucose metabolism in Aspergillus nidulans. European Journal of Biochemistry 271(15): 3227-3241.
Chen Y. and Fernando W. G. D. 2006. Prevalence of pathogenicity groups of Leptosphaeria maculans in western Canada and North Dakota, USA. Canadian journal of plant pathology 28(4): 533-539.
Conklin P. L. and Barth C. 2004. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, Cell & Environment 27(8): 959-970.
Das-Chatterjee A., Goswami L., Maitra S., Dastidar K. G., Ray S. and Majumder A. L. 2006. Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS letters 580:3980-3988.
Donahue J. L., Alford S. R., Torabinejad J., Kerwin R. E., Nourbakhsh A., Ray W. K., Hernick M., Huang X., Lyons B. M. and Hein P. P. 2010. The Arabidopsis thaliana myoinositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. The Plant Cell 22: 888-903.
Farmer E. E., Weber H. and Vollenweider S. 1998. Fatty acid signaling in Arabidopsis. Planta 206: 167-174.
Fernando W. G., Zhang X. and Amarasinghe C. C. 2016. Detection of Leptosphaeria maculans and Leptosphaeria biglobosa Causing Blackleg Disease in Canola from Canadian Canola Seed Lots and Dockage. Plants 5(1): 12.
Finkemeier I. and Sweetlove L. J. 2009. The role of malate in plant homeostasis. F1000 Biology Report 1: 47.
Fiehn O., Kopka J., Trethewey R. N. and Willmitzer L. 2000. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical chemistry 72(15): 3573-3580.
Francisco M., Soengas P., Velasco P., Bhadauria V., Cartea M. E. and Rodriguez V. M. 2016. Omics Approach to Identify Factors Involved in Brassica Disease Resistance. Current Issues in Molecular Biology 19: 31-42.
Gallie D. R. 2013. L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013.
Haddadi P., Ma L., Wang H. and Borhan M. H. 2016. Genome‐wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Molecular Plant Pathology 17(8): 1196-1210.
Hasanuzzaman M., Nahar K., Anee T. I. and Fujita M. 2017. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants 23(2): 249-268.
Huang Y. J., Pirie E. J., Evans N., Delourme R., King G. J. and Fitt B. D. 2009. Quantitative resistance to symptomless growth of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Plant Pathology 58(2): 314-323.
Howlett B. J., Idnurm A. and Pedras M. S. C. 2001. Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genetics and Biology 33(1): 1-14.
Iqbal M., Afzal A., Yaegashi S., Ruben E., Triwitayakorn K., Njiti V. and Lightfoot D. 2002. A pyramid of loci for partial resistance to Fusarium solani f. sp. glycines maintains Myo-inositol-1-phosphate synthase expression in soybean roots. Theoretical and Applied Genetics 105(8): 1115-1123.
Jing W. G., Fu J., Guo Y. and Liu A. 2015. Phytochemical screening of flavonoids with their antioxidant activities from rapeseed (Brassica napus L.). Phytochemistry Letters 13: 239-245.
Kachroo A. and Kachroo P. 2009. Fatty Acid–Derived Signals in Plant Defense. The Annual Review of Phytopathology 47:153–76.
Kopka J., Schauer N., Krueger S., Birkemeyer C., Usadel B., Bergmüller E. and Willmitzer L. 2005. GMD@ CSB. DB: the Golm metabolome database. Bioinformatics 21(8): 1635-1638.
Koch E., Badawy H. M. A. and Hoppe H. H. 1989. Differences Between Aggressive and Non‐Aggressive Single Spore Lines of Leptosphaeria maculans in Cultural Characteristics and Phytotoxin Production. Journal of phytopathology 124(1): 52-62.
Lingner U., Münch S., Sode B., Deising H. B. and Sauer N. 2011. Functional characterization of a eukaryotic melibiose transporter. Plant physiology 156(3): 1565-1576.
López-Gresa M.P., Lisón P., Kim H.K., Choi Y.H., Verpoorte R., Rodrigo I., Conejero V. and Bellés J.M. 2012. Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. Journal of Plant Physiology 169: 1586-1596.
Lucas K. A., Filley J. R., Erb J. M., Graybill E. R. and Hawes J. W. 2007. Peroxisomal metabolism of propionic acid and isobutyric acid in plants. Journal of Biological Chemistry 282(34): 24980-24989.
Majee M., Maitra S., Dastidar K. G., Pattnaik S., Chatterjee A., Hait N. C. and Majumder A. L. 2004. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. Journal of Biological Chemistry 279(27): 28539-28552.
Mandal S. M., Chakraborty D. and Dey S. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant signaling & behavior 5(4): 359-368.
Matsuura H. N. and Fett-Neto A. G. 2017. Plant alkaloids: main features, toxicity, and mechanisms of action. Plant Toxins 243-261.
McGaw L. J., Jäger A. K., Van Staden J. and Houghton P. J. 2002. Antibacterial effects of fatty acids and related compounds from plants. South African journal of botany 68(4): 417-423.
Meena M., Prasad V., Zehra A., Gupta V. K. and Upadhyay R. S. 2015. Mannitol metabolism during pathogenic fungal–host interactions under stressed conditions. Frontiers in microbiology 6.
Mengistu A., Rimmer S. R., Koch E. and Williams P. H. 1991. Pathogenicity grouping of isolates of Leptosphaeria maculans on Brassica napus cultivars and their disease reaction profiles on rapid-cycling Brassicas. Plant Disease 75: 1279-1282.
Moghaddam M. R. B. and Van den Ende W. 2013. Sweet immunity in the plant circadian regulatory network. Journal of experimental botany 64(6): 1439-1449.
Pang Y. L. J., Poruri K. and Martinis S. A. 2014. tRNA synthetase: tRNA aminoacylation and beyond. Wiley Interdisciplinary Reviews: RNA 5(4): 461-480.
Pedras M. S. C., Zheng Q. A., Gadagi R. S. and Rimmer S. R. 2008. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 69(4): 894-910.
Raman H., Raman R. and Larkan N. 2013. Genetic dissection of blackleg resistance loci in rapeseed (Brassica napus L.). Plant Breeding from Laboratories to Fields 85-120.
Roessner U., Wagner C., Kopka J., Trethewey R. N. and Willmitzer L. 2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. The Plant Journal 23(1): 131-142.
Simoh S., Quintana N., Kim H. K. Choi Y. H. and Verpoorte R. 2009. Metabolic changes in Agrobacterium tumefaciens-infected Brassica rapa. Journal of Plant Physiology 166(10): 1005-1014.
Sinha A. K., Hofmann M. G., Römer U., Köckenberger W., Elling L. and Roitsch T. 2002. Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology 128(4): 1480-1489.
Szabados L. and Savoure A. 2010. Proline: a multifunctional amino acid. Trends in plant science 15(2): 89-97.
Trouvelot S., Héloir M. C., Poinssot B., Gauthier A., Paris F., Guillier C. and Adrian M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in plant science 5: 592.
Williams S. P., Gillaspy G. E. and Perera I. Y. 2015. Biosynthesis and possible functions of inositol pyrophosphates in plants. Frontiers in plant science 6: 67.
Williams P. H. 1985. Crucifer genetics cooperative (CRGC) resource book. Department of Plant Pathology, University of Wisconsin, Madison.
Zeier J. 2013. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell & Environment 36(12): 2085-2103.
Zhang Y., Swart C., Alseekh S., Scossa F., Jiang L., Obata T. and Fernie A. R. 2018. The extra-pathway interactome of the TCA cycle: expected and unexpected metabolic interactions. Plant physiology 177(3): 966-979.
Zhang Y., Zhao J.,  Xiang Y., Bian X., Zuo1 Q., Shen Q., Gai1 J. and Xing H. 2011. Proteomics study of changes in soybean lines resistant and sensitive to Phytophthora sojae. Proteome Science 9:1-13.