معرفی DNAآپتامر کوتاه شده به عنوان پروب مولکولی جدید برای ردیابی آفلاتوکسین B1 به کمک تکنیک های شبیه سازی محاسباتی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه گیاهپزشکی. پردیس کشاورزی و منابع طبیعی-دانشگاه تهران- بخش بیوتکنولوژی میکروبی- پژوهشگاه بیوتکنولوژِی کشاورزی ایران

2 عضو هیئت علمی دانشگاه تهران

3 مرکز تحقیقات چشم. بیمارستان رسول اکرم. دانشگاه علوم پزشکی ایران. تهران. ایران

4 دانشکده شیمی، دانشگاه تورین ایتالیا

5 گروه گیاهپزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

چکیده

توالی های تک رشته DNA یا RNA که تحت عنوان آپتامر شناخته می شوند قادرند مولکول هدف را با اختصاصیتی در حد آنتی بادی های مونوکلونال ردیابی نمایند. با این وجود قرار گیری مایکوتوکسین ها در گروه مولکول های کوچک و تفاوت بالای وزن مولکولی آنها با توالی های آپتامری تبدیل به چالشی جدی در معرفی پروب های آپتامری برای آنها شده است. در بررسی حاضر با هدف دستیابی به توالی آپتامری جدید و کوتاه تر برای آفلاتوکسین B1 (AFB1)، ابتدا به کمک الگوریتم ژنتیک یک کتابخانه الیگونوکلئوتیدی اولیه(Lib1) براساس توالی آپتامری اختصاصی آفلاتوکسین B1 (bp 50 Apt1,) طراحی گردید. قدرت اتصال توالی های آپتامری کتابخانه Lib1 به مولکول AFB1 با روش داکینگ مولکولی ارزیابی و بهترین توالی آپتامری با هدف ایجاد کتابخانه جدید(Lib2) و با استراتژی کوتاه کردن تغییر داده شد. غربال مجازی توالی های آپتامری کتابخانه Lib2 از نظرقدرت اتصال به مولکول AFB1 منجر به معرفی توالی آپتامری کوتاه شده C52-T با طول bp 19 گردید. پایداری و نوع تعاملات درکمپلکس آپتامری C52-T و مولکول AFB1 با روش های شبیه سازی دینامیک مولکولی و MM-PBSA مورد بررسی قرار گرفت. نتایج حاصل از تخمین ثابت اتصال برای توالی های آپتامری C52، C52-T و Apt1 با روش رنگ سنجی مبتنی بر نانوذرات تغییر نیافته طلا در مطابقت کامل با نتایج مطالعات درون رایانه ای بود. به نظر می رسد که تکنیک های محاسباتی از پتانسیل بسیار خوبی درمعرفی پروب های مولکولی و حساس جهت طراحی آپتاسنسورهای اختصاصی مایکوتوکسین ها برخوردار باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing truncated DNA aptamer as a new molecular probe for aflatoxin B1 detection using computational simulation techniques

نویسندگان [English]

  • Maryam Mousivand 1
  • Mohammad Javan-Nikkhah 2
  • Kowsar Bagherzadeh 3
  • Laura Anfossi 4
  • Amir Mirzadi Gohari 5
1 Department of Plant Protection, College of Agricultural Sciences & Engineering, University of Tehran, Karaj 31587-77871, Iran. Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran,
2 Department of Plant Protection, College of Agricultural Sciences & Engineering, University of Tehran, Karaj
3 Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
4 Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin, Italy.
5 Department of Plant Protection, College of Agricultural Sciences & Engineering, University of Tehran, Karaj 31587-77871, Iran.
چکیده [English]

Single strand DNA or RNA known as aptamers, are able to detect the target molecule with specificity at the monoclonal antibody level. However, the placement of mycotoxins in small molecule groups and their high molecular weight differences with aptamers have become a serious challenge in introducing aptameric probes for them. In the present study, in order to achieve a new and shorter aptamers sequence for aflatoxin B1 (AFB1), an initial oligonucleotide library (Lib1) was designed based on the sequence of a known AFB1 aptamer (named Apt1, 50 bp) using the genetic algorithm. The best aptamer from the Lib1 library was selected based on the molecular docking results and has been modified to create a new library (Lib2) using the truncating strategy. Virtual screening of the Lib2 library in terms of their binding affinity over AFB1 molecule led to obtain the truncated aptamer, C52-T, with 19 bp in length. Type of interaction and stability of C52-T-AFB1 complex were investigated using molecular dynamics simulations (MD) and MM-PBSA method. The affinity constant of C52, C52-T and Apt1 aptamers over AFB1 were estimated through unmodified gold nanoparticle-based colorimetric assay. The experimentally founding and in silico results were completely consistent. It seems that the computational techniques have the great potential to introduce sensitive molecular probes to design specific mycotoxins aptasensors.

کلیدواژه‌ها [English]

  • mycotoxin
  • genetic algorithm
  • molecular docking
  • molecular dynamics
  • gold nanoparticles
Alivisatos A.P. Johnsson K.P. Peng X. Wilson T.E. Loweth C.J. Bruchez M.P. Schultz P.G.1996. Organization of nanocrystal molecules using DNA. Nature 382: 609-611
Almeida J. S. F. Dolezal R. Krejcar O. Kuca K. Musilek K. Jun D. França T.C. C. 2018. Molecular modeling studies on the interactions of aflatoxin b1 and its metabolites with human acetylcholinesterase. part ii: interactions with the catalytic anionic site (CAS). Toxins. 10(10): 389
Berendsen H.J.C. van der Spoel D. van Drunen R. 1995. GROMACS – A message-passing parallel molecular dynamics implementation. Computer Physics Communications 91: 43–56
Biovia D.S. 2015. Discovery studio modeling environment. San Diego, Dassault Systemes, Release, 4
Chen X. Huang Y. Duan N. Wu S. Ma X. Xia Y. Zhu C. Jiang Y. Wang Z. 2013. Selection and identification of ssDNA aptamers recognizing zearalenone. Analytical and Bioanalytical Chemistry 405: 6573–6581
Cowan J. A. Ohyama T. Wang D. Natarajan K. 2000. Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions. Nucleic Acids Research 28: 2935-2942
Cruz-Aguado J. A. Penner G. 2008. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Analytical Chemistry 80: 8853–8855
Darden T. York D. Pedersen L. 1993.Particle Mesh Ewald: An N ⋅log (N) method for Ewald Sums in Large Systems. The Journal of Chemical Physics 98: 10089-10092
Dehury B. Sahu M. Sarma K. Sahu J. Sen P. Modi M. K. Sharma G. D. Choudhury M. D. Barooah M. 2013. Molecular phylogeny, homology modeling, and molecular dynamics simulation of race-specific bacterial blight disease resistance protein (xa5) of rice: a comparative agriproteomics approach. OMICS 17:423-438
Dolenc J. Borstnik U. Hodoscek M. Koller J. Janezic D. 2005. An ab initio QM/MM study of the conformational stability of complexes formed by netropsin and DNA. The importance of van der Waals interactions and hydrogen bonding. Journal of Molecular Structure 718 : 77–85
Hasegawa H. Savory N. Abe K. Ikebukuro K. 2016. Methods for improving aptamer binding affinity. Molecules 21: 421
Huang Y. Zhao S. Chen Z. F. Shi M. Liang H. 2012. Amplified fluorescence polarization aptasensors based on structure-switching-triggered nanoparticles enhancement for bioassays. Chemical Communications 48(60): 7480–7482
Ikebukuro K. Okumura Y. Sumikura K. Karube I. 2005. A novel method of screening thrombin-inhibiting DNA aptamers using an evolution-mimicking algorithm. Nucleic Acids Research 33(12): e108
Jeddi I. Saiz L. 2017. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Scientific Reports 7:1178.
Jokar M. Safaralizadeh M. Hadizadeh F. Rahmani F. Kalani M. R. 2016. Apta-nano-sensor preparation and in vitro assay for rapid diazinon detection using a computational molecular approach. Journal of Biomolecular Structure and Dynamics 34:343-353
Jokar M. Safaralizadeh M. Hadizadeh F. Rahmani F. Kalani M. R. 2015. Design and evaluation of an apta-nano-sensor to detect acetamiprid in vitro and in silico. Journal of Biomolecular Structure and Dynamics 36(6): 1402-1416
Kumari R. Kumar R. Lynn A. 2014. g_mmpbsa - A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling 54:1951-62
Li B.Q. Zhang Y.C. Huang G.H. Cui W.R. Zhang N. Cai Y.D. 2014. Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PloS One 9(1): e86729
Lin C. H. Patel. D. J. 1997. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chemical biology 4: 817-832
Luan Y. Chen Z. Xie G. Chen J. Lu A. Li C. Fu H. Ma Z. Wang J. 2015. Rapid visual detection of aflatoxin b1 by label-free aptasensor using unmodified gold nanoparticles. Journal of Nanoscience and Nanotechnology 15: 1357–1361
Malhotra S. Pandey A. K. Rajput Y. S. Sharma R. 2014. Selection of aptamers for aflatoxin M1 and their characterization. Journal of Molecular Recognition 27: 493–500
Mascini M. 2009. Aptamers in bioanalysis. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.
Mayer G. Ahmed M. S. Dolf A. Endl E. Knolle P. A. Famulok M. 2010. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nature Protocols 5(12):1993-2004
McKeague M. Bradley C.R. De Girolamo A. Visconti A. Miller J. D. Derosa M. C. 2010. Screening and initial binding assessment of fumonisin b(1) aptamers. International Journal of Molecular Sciences 11(12):4864-81
Molecular Operating Environment (MOE). 2014.0901. By Chemical Computing Group Inc.
Morris G. M. Huey R. Lindstrom W. Sanner M. F. Belew R. K. Goodsell D. S. Olson A. J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30: 2785–2791
Mousivand M. Anfossi L. Bagherzadeh K. Barbero N. Mirzadi-Gohari A. Javan-Nikkhah M. 2020. In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B1 for biosensor development. Analytica Chimica Acta 1105:178-186
Neves M. A. Blaszykowski C. Bokhari S. Thompson M. 2015. Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Biosensors and Bioelectronics 72: 383–392
Noma, T. Sode K. Ikebukuro K. 2006. Characterization and application of aptamers for Taq DNA polymerase selected using an evolution-mimicking algorithm. Biotechnology Letters 28(23):1939-44
Patent:PCT/CA2010/001292, NeoVentures Biotechnology Inch.
Pathak R. K. Taj G. Pandey D. Kasana V. K. Baunthiyal M.and Kumar A. 2016. Molecular modeling and docking studies of phytoalexin(s) with pathogenic protein(s) as molecular targets for designing the derivatives with anti-fungal action on Alternaria spp. of Brassica. Plant Omics 9:172-182
Perez A. Marchan I. Svozil D. Sponer J. Cheatham T. E. Laughton C. A. Orozco M. 2007. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of alpha/gamma Conformers. Biophysical Journal 92: 3817–3829
Pettersen E. F. Goddard T. D. Huang C. C. Couch G. S. greenblatt D. M. Meng E. C. Ferrin T. E. 2004. UCSF Chimera– A Visualization System for Exploratory Research and Analysis Journal of Computational Chemistry 25:1605–1612
Popenda M. Szachniuk M. Antczak M. Purzycka K. J. Lukasiak P. Bartol N. Adamiak R. W. 2012. Automated 3D structure composition for large RNAs. Nucleic Acids Research 40(14): e112
Ruscito A. DeRosa M. 2016. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Frontiers in Chemistry 4:14
Shanmugam G. Lee S. K. Jeon J. 2018. Identification of potential nematicidal compounds against the pine wood nematode, Bursaphelenchus xylophilus through an in silico approach. Molecules 23: 1828
Stoddard C. D. Montange R. K. HennellyS. P. Rambo R. P. Sanbonmatsu K. Y. Batey R. T. 2000. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18: 787-797
Stroka J. Anklam E. 2002. New strategies for the screening and determination of aflatoxins and the detection of aflatoxin-producing moulds in food and feed. Trac-trends in analytical chemistry 21: 90–95
Taylor D. 2015. The pharmaceutical industry and the future of drug development. In: Pharmaceuticals in the environment, eds. by R. E. Hester and R. M. Harrison, pp. 1-33. The Royal Society of Chemistry, London
Tuerk C. Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase .Science 249(4968): 505–510
Wang L. Ma W. Chen W. Liu L. Ma W. Zhu Y. Xu L. Kuang H. Xu C. 2011. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosensors and Bioelectronics 26: 3059–3062
Wu S. Duan N. Zhang W. Zhao S. Wang Z. 2016. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Analytical Biochemistry 508: 58-64
Xue Y. Shui G. Wenk M. R. 2014. TPS1 drug design for rice blast disease in Magnaporthe oryzae. Springerplus 3:18.
Yang G. F. Jiang X. H. Ding Y. Yang H. Z. 2002. Three dimensional quantitative structure-activity relationships of novel 2-heteroaryl-4-chromanone derivatives. Acta Chimica Sinica 60:134-138
Zoete V. Cuendet M. Grosdidier A. Michielin O. 2011. SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry 32: 2359–2368
Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization predictionNucleic Acids Research 31(13): 3406–3415.